1.大连理工大学 机械工程学院, 辽宁 大连 116024
张明亮(1995— ),男,河北保定人,硕士研究生,研究方向为故障诊断与智能识别。
李宏坤(1974— )男,辽宁大连人,教授,博士生导师,研究方向为故障诊断与运行可靠性评估。
扫 描 看 全 文
张明亮,李宏坤,马跃等.基于敏感分量与MCPG的轴承故障诊断方法[J].机械传动,2021,45(04):80-87.
Zhang Mingliang,Li Hongkun,Ma Yue,et al.Bearing Fault Diagnosis Method based on Sensitive Component and MCPG[J].Journal of Mechanical Transmission,2021,45(04):80-87.
张明亮,李宏坤,马跃等.基于敏感分量与MCPG的轴承故障诊断方法[J].机械传动,2021,45(04):80-87. DOI: 10.16578/j.issn.1004.2539.2021.04.014.
Zhang Mingliang,Li Hongkun,Ma Yue,et al.Bearing Fault Diagnosis Method based on Sensitive Component and MCPG[J].Journal of Mechanical Transmission,2021,45(04):80-87. DOI: 10.16578/j.issn.1004.2539.2021.04.014.
针对滚动轴承故障难以准确识别问题,提出了一种基于敏感分量与多卷积池化组(Multi convolution pooling group,MCPG)的故障诊断方法。首先,采用经验模态分解(Empirical mode decomposition,EMD)将原始信号分解成为多个固有模态分量(Intrinsic mode function,IMF),使用离散Fréchet距离作为衡量指标,选取出故障敏感分量作为表征不同故障类型的故障数据源;之后,提出了一种MCPG深度神经网络架构,并使用敏感数据源对模型进行训练与测试,从而实现数据驱动的轴承故障诊断。通过实验验证,表明该方法对不同类型的振动数据(不同转速、不同损伤类型、不同损伤程度)均具有较好的识别效果。
Aiming at the problem that is difficult to accurately identify rolling bearing faults, a fault diagnosis method based on sensitive components and Multi Convolution Pooling Group (MCPG) is proposed. Firstly, the Empirical Mode Decomposition (EMD) is used to decompose the original signal into multiple Intrinsic Mode Function(IMF), and the discrete Fréchet distance is used as the measurement index, the fault sensitive components are selected as the fault data sources representing different fault types. Then, a MCPG deep neural network architecture is proposed, and sensitive data sources are used to train and test the model to achieve the data-driven bearing fault diagnosis. Through experimental verification, it is proved that the method has good recognition effect on different types of vibration data (different speeds, different damage types, different damage degrees).
故障诊断滚动轴承EMD离散Fréchet卷积神经网络
Fault diagnosisRolling bearingEMDDiscrete FréchetConvolutional neural networks
肖雄,王健翔,张勇军,等.一种用于轴承故障诊断的二维卷积神经网络优化方法[J].中国电机工程学报,2019,39(15):4558-4568.
XIAO Xiong,WANG Jianxiang,ZHANG Yongjun,et al.A two-dimensional convolution neural network optimization method for bearing fault diagnosis[J].Proceedings of the CSEE,2019,39(15):4558-4568.
GONZALEZ P I,DURAN M J,RIOS G N,et al.Open-switch fault detection in five-phase induction motor drives using model predictive control[J].IEEE Transactions on Industrial Electronics,2017,65(4):3045-3055.
WANG D,PETER W T.Prognostics of slurry pumps based on a moving-average wear degradation index and a general sequential monte carlo method[J].Mechanical Systems and Signal Processing,2015,56/57:213-229.
HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,1998,454(1971):903-995.
隋文涛,张丹,WANG W.基于EMD和MKD的滚动轴承故障诊断方法[J].振动与冲击,2015,34(9):55-59.
SUI Wentao ,ZHANG Dan,WANG W.Fault diagnosis of rolling element bearings based on EMD and MKD[J].Journal of Vibration and Shock,2015,34(9):55-59.
陈俊洵,程龙生,胡绍林,等.基于EMD的改进马田系统的滚动轴承故障诊断[J].振动与冲击,2017,36(5):151-156.
CHEN Junxun,CHENG Longsheng,HU Shaolin,et al.Fault diagnosis of rolling bearings using modified mahalanobis-taguchi system based on EMD[J].Journal of Vibration and Shock,2017,36(5):151-156.
杜振东,赵建民,李海平,等.基于SA-EMD-PNN的柱塞泵故障诊断方法研究[J].振动与冲击,2019,38(8):145-152.
DU Zhendong,ZHAO Jianmin,LI Haiping,et al.A fault diagnosis method of a plunger pump based on SA-EMD-PNN[J].Journal of Vibration and Shock,2019,38(8):145-152.
雷亚国,何正嘉,訾艳阳.基于混合智能新模型的故障诊断[J].机械工程学报,2008,44(7):112-117.
LEI Yaguo,HE Zhengjia,ZI Yanyang.Fault diagnosis based on novel hybrid intelligent model[J].Journal of Mechanical Engineering,2008,44(7):112-117.
尹爱军,梁子晓,张波,等.基于主曲线相似度的轴承健康状态评估方法[J].振动、测试与诊断,2019,39(3):625-630.
YIN Aijun,LIANG Zixiao,ZHANG Bo,et al.Evaluation method of bearing health state based on similarity of principal curve[J].Journal of Vibration,Measurement & Diagnosis,2019,39(3):625-630.
LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
KRIZHEYSKY A,SUTSKEYER I,HINTON G E.Image net classification with deep convolutional neural networks[C].Proceedings of the 25th International Conference on Neural Information Processing Systems.[S.l.]:Curran Associates Inc,2012:1097-1105.
SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,June 7-12,2015,Boston,MA,USA.New York:IEEE,2014:1-12.
李恒,张氢,秦仙蓉,等.基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J].振动与冲击,2018,37(19):124-131.
LI Heng,ZHANG Qing,QIN Xianrong,et al.Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J].Journal of Vibration and Shock,2018,37(19):124-131.
WEN L,LI X,GAO L,et al.A new convolutional neural network based data-driven fault diagnosis method[J].IEEE Transactions on Industrial Electronics,2017,65(7):5990-5998.
张伟.基于卷积神经网络的轴承故障诊断算法研究[D].哈尔滨:哈尔滨工业大学,2017:9-55.
ZHANG Wei.Study on bearing fault diagnosis algorithm based on convolutional neural network[D].Harbin:Harbin Institute of Technology,2017:9-55.
徐晓刚,徐冠雷,王孝通,等.经验模式分解(EMD)及其应用[J].电子学报,2009,37(3):581-585.
XU Xiaogang,XU guanlei,WANG Xiaotong,et al.Empirical mode decomposition and its application[J].Acta Electronica Sinica,2009,37(3):581-585.
EITER T,MANNILIA H.Computing discrete Fréchet distance[J].See Also,1994,64(3):636-637.
GLOROT X,BORDES A,BENGIO Y.Deep sparse rectifier neural networks[J].Journal of Machine Learning Research,2011,15:315-323.
GU J,WANG Z,KUEN J,et al.Recent advances in convolutional neural networks[J].Computer Science,2015(12):1-14.
LIN M,CHEN Q,YAN S.Network in network[EB/OL].[2020-05-01]https://arxiv.xilesou.top/abs/1312.4400.2014.03.04https://arxiv.xilesou.top/abs/1312.4400.2014.03.04.
LECUN Y,BENGIO Y,HINTON G E.Deep learning[J].Nature,2015,521(14539):436-444.
MAATEN L,HINTON G.Visualizing data using t-SNE[J].Journal of Machine Learning Research,2008(9):2579-2605.
胡茑庆,陈徽鹏,程哲,等.基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J].机械工程学报,2019,55(7):9-18.
HU Niaoqing,CHEN Huipeng,CHENG Zhe,et al.Fault diagnosis for planetary gearbox based on EMD and deep convolutional neural networks[J].Journal of Mechanical Engineering,2019,55(7):9-18.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构