1.中北大学 机械工程学院, 山西 太原 030051
刘宇涛(1995— ),男,山西忻州人,硕士研究生,研究方向为故障诊断与状态检测。
孙虎儿(1972— ),男,山西寿阳人,博士,副教授,研究方向为机械状态监测与故障诊断、摩擦科学与工程。
扫 描 看 全 文
刘宇涛,孙虎儿.基于粒子群优化的CYCBD在滚动轴承故障特征提取的应用研究[J].机械传动,2021,45(02):171-176.
Liu Yutao,Sun Huer.Study on Application of CYCBD based on PSO in Fault Feature Extraction of Rolling Bearing[J].Journal of Mechanical Transmission,2021,45(02):171-176.
刘宇涛,孙虎儿.基于粒子群优化的CYCBD在滚动轴承故障特征提取的应用研究[J].机械传动,2021,45(02):171-176. DOI: 10.16578/j.issn.1004.2539.2021.02.026.
Liu Yutao,Sun Huer.Study on Application of CYCBD based on PSO in Fault Feature Extraction of Rolling Bearing[J].Journal of Mechanical Transmission,2021,45(02):171-176. DOI: 10.16578/j.issn.1004.2539.2021.02.026.
针对在背景噪声下滚动轴承故障初期周期性瞬态冲击不明显的问题,应用基于循环平稳最大化盲解卷积方法(Blind deconvolution based on cyclostationarity maximization,CYCBD)。滤波器长度和循环频率左右CYCBD降噪效果,应用粒子群优化算法(Particle swarm optimization,PSO)对其进行智能化寻优,确定优化参数,解决CYCBD不稳定问题。首先,采用PSO优化CYCBD中滤波器长度和循环周期频率,对周期性冲击成分进行增强;然后,通过包络谱峰值因子(Crest factor of envelope spectrum,EC)作为PSO的目标函数,迭代寻找滤波器长度和循环周期频率的最优解;最后,对CYCBD应用最优解,对增强后的信号进行包络解调分析,可以准确地获得轴承信号的故障特征频率。通过对仿真信号和实验数据分析,表明该方法可有效增强振动信号的周期性瞬态冲击特征,在滚动轴承早期故障特征提取方面具有优势。
The blind deconvolution based on cyclostationarity maximization (CYCBD) is applied to solve the problem that the periodic transient impacts is not obvious at the initial stage of rolling bearing failure under background noise. The noise reduction effect of CYCBD around the filter length and cycle frequency, particle swarm optimization algorithm (PSO) is applied to intelligently optimize CYCBD. Determine the optimal parameters to solve the instability of CYCBD. Firstly, PSO is used to optimize the filter length and cycle frequency in CYCBD to enhance the periodic impacts component. Then, the optimal solution of filter length and cycle frequency is iteratively found by using crest factor of envelope spectrum(EC) as the objective function of PSO. Finally, by applying the optimal solution to CYCBD and conducting envelope demodulation analysis on the enhanced signals, the fault characteristic frequency of bearing signals can be accurately obtained. Through the analysis of simulation signals and experimental data, it is shown that the method can effectively enhance the periodic transient impacts characteristics of vibration signals and has advantages in the early fault feature extraction of rolling bearings.
滚动轴承循环平稳最大化的盲反褶积粒子群优化算法滤波器长度循环频率
Rolling bearingBlind deconvolution based on cyclostationarity maximizationParticle swarm optimization algorithmFilter lengthCycle frequency
于明奇,夏均忠,白云川,等.基于格点搜索法的MOMEDA在滚动轴承故障特征提取中的应用[J].军事交通学院学报,2018,20(3):50-55.
YU Mingqi,XIA Junzhong,BAI Yunchuan,et al.Application of MOMEDA in rolling bearing fault feature extraction based on grid search method[J].Journal of Military Transportation University,2018,20(3):50-55.
祝小彦,王永杰.基于MOMEDA与Teager能量算子的滚动轴承故障诊断[J].振动与冲击,2018,37(6):104-110.
ZHU Xiaoyan,WANG Yongjie.Fault diagnosis of rolling bearing based on the MOMEDA and teager energy operator[J].Journal Vibration and Shock,2018,37(6):104-110.
WIGGINSRA R A.Minimum entropy deconvolution[J].Geoexploration,1978,16(1/2):21-35.
ENDO H,RANDALL R B.Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter[J].Mechanical Systems and Signal Processing,2006,21(2):906-919.
MCDONALD G L,ZHAO Q,ZUO M J.Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection[J].Mechanical Systems & Signal Processing,2012,33:237-255.
MCDONALD G L,ZHAO Q.Multipoint optimal minimum entropy deconvolution and convolution fix:application to vibration fault detection[J].Mechanical Systems and Signal Processing,2017,82:461-477.
MARCO B,ANTONI J,D'ELIA G.Blind deconvolution based on cyclostationarity maximization and its application to fault identification[J].Journal of Sound and Vibration,2018,432:569-601.
WANG X L,TANG G J,HE Y L,et al.Application of RSSD-OCYCBD strategy in enhanced fault detection of rolling bearing[J].Complexity,2020(4):1-22.
KENNEDY J,OBAIAHNAHATTI B G.Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks,November 27-December 1,Perth,WA,Australia.New York:IEEE,1995,4:1942-1948.
CHENG Y.WANG Z W,ZHANG W H,et al.Particle swarm optimization algorithm to solve the deconvolution problem for rolling element bearing fault diagnosis[J].ISA Transactions,2019,90:244-267.
王维博.粒子群优化算法研究及其应用[D].成都:西南交通大学,2012:12-16.
WANG Weibo.Research on particle swarm optimization algorithm its application[D].Chengdu:Southwest Jiaotong University,2012:12-16.
张龙,熊国良,黄文艺.复小波共振解调频带优化方法和新指标[J].机械工程学报,2015,51(3):129-138.
ZHANG Long,XIONG Guoliang,HUANG Wenyi.New procedure and index for the parameter optimization of complex wavelet based resonance demodulation[J].Journal of Mechanical Engieeering,2015,51(3):129-138.
Case Western Reserve University Bearing Date Center.Seeded fault test data[DB/OL].[2020-05-08].http://csegroups.case.edu/bearingdatacenter/homehttp://csegroups.case.edu/bearingdatacenter/home.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构