1.西北工业大学 机电学院, 陕西 西安 710072
张维(1970— ),男,陕西西安人,博士,副教授,研究方向为智能制造、制造数据分析。
扫 描 看 全 文
张维,马志华.基于IFOA-SVM的轴承故障分类识别方法[J].机械传动,2021,45(02):148-156.
Zhang Wei,Ma Zhihua.Classification and Recognition Method for Bearing Fault based on IFOA-SVM[J].Journal of Mechanical Transmission,2021,45(02):148-156.
张维,马志华.基于IFOA-SVM的轴承故障分类识别方法[J].机械传动,2021,45(02):148-156. DOI: 10.16578/j.issn.1004.2539.2021.02.023.
Zhang Wei,Ma Zhihua.Classification and Recognition Method for Bearing Fault based on IFOA-SVM[J].Journal of Mechanical Transmission,2021,45(02):148-156. DOI: 10.16578/j.issn.1004.2539.2021.02.023.
为了更好地准确识别轴承故障特征非线性分类问题,提出了一种基于IFOA-SVM的故障分类识别方法。使用变分模态分解方法对轴承振动信号进行分解处理,以模态分量的模糊近似熵和能量熵构成故障特征向量;基于“一对一”策略拓展设计了OVO-SVM多分类器,构造多项式核函数和径向基核函数组合的混合核函数,使用IFOA算法对SVM分类器的核函数比例系数,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=34101660&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=34101657&type=,2.28600001,2.62466669,、径向基核函数宽度参数,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=34101666&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=34101663&type=,2.45533323,2.62466669,、惩罚因子,C,等关键参数进行优化,构建IFOA-SVM故障分类识别模型;提出了轴承故障识别流程。结果表明,该方法可以实现对轴承故障特征准确高效的识别。
In order to identify the nonlinear classification of bearing fault features more accurately, a fault identification method based on IFOA-SVM is proposed. Firstly, the variational mode decomposition method is used to decompose the vibration signals of the bearing, and the fuzzy approximate entropy and energy entropy of the modal component is used to form fault characteristics. Based on “one versus one” strategy, an OVO-SVM multi-classifier is designed, and the hybrid kernel function combined with polynomial kernel function and radial basis kernel function is constructed. Then, the key parameters such as the ratio coefficient of the kernel function ,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=34101672&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=34101669&type=,2.28600001,2.62466669,, the width parameter of the radial basis kernel function ,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=34101678&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=34101677&type=,2.45533323,2.62466669,, the penalty factor ,C, is optimized by IFOA algorithm, and the IFOA-SVM fault multi-classification identification model is built. The process of bearing fault identification is presented. Finally, the experimental results show that the method can realize accurate and efficient identification of the fault features of bearing.
变分模态分解改进果蝇优化算法支持向量机故障识别
Variational mode decompositionImproved fruit-fly optimization algorithmSupport vector machineFault recognition
牛海清,叶开发,许佳,等.基于粒子群优化支持向量机的电缆温度计算[J].华南理工大学学报(自然科学版),2016,44(4):77-83.
NIU Haiqing,YE Kaifa,XU Jia,et al.Cable temperature calculation based on PSO-SVM[J].Journal of South China University of Technology (Natural Science Edition),2016,44(4):77-83.
洪翠,杨华锋,卢国仪,等.基于振动信号SVM分类的配变故障识别方法[J].仪器仪表学报,2016,37(6):1299-1308.
HONG Cui,YANG Huafeng,LU Guoyi,et al.Fault identification method for distribution transformer based on SVM classification of vibration signal[J].Chinese Journal of Scientific Instrument,2016,37(6):1299-1308.
FERNÁNDEZ-FRANCOS D,MARTÍNEZ D,FONTENLA-ROMERO O,et al.Automatic bearing fault diagnosis based on one-class ν-SVM[J].Computers and Industrial Engineering,2013,64(1):357-365.
SALAHSHOOR K,KORDESTANI M,KHOSHRO M S.Fault detection and diagnosis of an industrial steam turbine using fusion of SVM(support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers[J].Energy,2010,35(12):5472-5482.
郑蕊蕊,赵继印,赵婷婷,等.基于遗传支持向量机和灰色人工免疫算法的电力变压器故障诊断[J].中国电机工程学报,2011,31(7):56-63.
ZHENG Ruirui,ZHAO Jiyin,ZHAO Tingting,et al.Power transformer fault diagnosis based on genetic support vector machine and gray artificial immune algorithm[J].Proceedings of the CSEE,2011,31(7):56-63.
YANG Y,YU D,CHENG J.A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM[J].Measurement,2006,40(9):943-950.
ABBASION S,RAFSANJANI A,FARSHIDIANFAR A,et al.Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine[J].Mechanical Systems and Signal Processing,2007,21(7):2933-2945.
付胜,徐斌,杜晓帆,等.基于奇异值分解和支持向量机的齿轮故障诊断[J].机械传动,2013,37(9):98-100.
FU Sheng,XU Bin,DU Xiaofan,et al.Gear fault diagnosis based on singular value decomposition and support vector machine[J].Journal of Mechanical Transmission,2013,37(9):98-100.
VAN M,KANG H J.Bearing defect classification based on individual wavelet local fisher discriminant analysis with particle swarm optimization[J].IEEE Transactions on Industrial Informatics,2015,12(1):124-135.
XU H B,CHEN G H.An intelligent fault identification method of rolling bearings based on LSSVM optimized by improved PSO[J].Mechanical Systems and Signal Processing,2013,35(1/2):167-175.
SU Z,TANG B,LIU Z,et al.Multi-fault diagnosis for rotating machinery based on orthogonal supervised linear local tangent space alignment and least square support vector machine[J].Neurocomputing,2015,157:208-222.
张智胜,张云鹏,刘青.支持向量机和小波包分析下的轴承故障诊断[J].机械设计与制造,2017(3):204-207.
ZHANG Zhisheng,ZHANG Yunpeng,LIU Qing.Fault diagnosis on bearing by support vector machine and wavelet analysis[J].Machinery Design & Manufacture,2017(3):204-207.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构