1.陕西科技大学 机电工程学院, 陕西 西安 710021
2.中国科学院 深圳先进技术研究院, 广东 深圳 518055
刘友福(1995— ),男,四川巴中人,硕士研究生,研究方向为智能机器人技术。
卢军(1961— ),男,陕西咸阳人,硕士,教授,研究方向为机器视觉与智能工业机器人技术。
扫 描 看 全 文
刘友福,卢军.一种助力髋关节伸展和屈曲的柔性外骨骼机器人[J].机械传动,2021,45(02):90-96.
Liu Youfu,Lu Jun.A Flexible Exoskeleton Robot for Assisting Both Hip Joint Extension and Flexion[J].Journal of Mechanical Transmission,2021,45(02):90-96.
刘友福,卢军.一种助力髋关节伸展和屈曲的柔性外骨骼机器人[J].机械传动,2021,45(02):90-96. DOI: 10.16578/j.issn.1004.2539.2021.02.014.
Liu Youfu,Lu Jun.A Flexible Exoskeleton Robot for Assisting Both Hip Joint Extension and Flexion[J].Journal of Mechanical Transmission,2021,45(02):90-96. DOI: 10.16578/j.issn.1004.2539.2021.02.014.
随着下肢外骨骼机器人的发展,出现了各种各样应用于医疗康复等领域的刚性外骨骼。刚性外骨骼会增加下肢额外的惯性力并限制人体运动的自由度;与刚性外骨骼相比,柔性可穿戴下肢外骨骼则可将一些对人体运动的影响因素减至最小。根据人体在行走过程中髋关节动力学变化,设计了一种为髋关节伸展和屈曲提供助力的柔性外骨骼。根据髋关节的关节力矩和关节力的变化,提出了一种助力策略和期望助力曲线控制电机追踪期望力曲线,从而得到实际作用于髋关节的实际力。为了减少由佩戴位置和穿戴者身材特征而引起的误差,提升助力效果,引入了PD型迭代学习控制(ILC)。为了评估助力效果,测量了4名受试者分别在穿戴外骨骼不助力、助力髋关节伸展和屈曲以及仅助力髋关节伸展 3种不同情况下产生的新陈代谢能;通过产生的新陈代谢能的值来评估助力效果。结果表明,与仅辅助髋关节伸展和穿着外骨骼不助力的情况相比,助力髋关节伸展和屈曲的平均净新陈代谢能分别减少了0.445 W/kg和1.027 W/kg,平均净新陈代谢率分别降低了7.45%和15.67%。
With growing of lower limb exoskeleton robots, large variety of rigid exoskeletons are designed for medical rehabilitation and the other purposes. Compared with the rigid exoskeletons, which added extra inertial to low limb and restricted wearer movement, but the flexible wearable lower extremity exoskeleton minimizes the impact of these factors on the human body locomotion. An exoskeleton that provides assistive force for both hip joint extension and flexion is designed through the variation in hip joint dynamics during strides. Based on the change of hip joint moment, an assistance strategy desired force curve is proposed. In order to obtain the actual force acting on the hip joint, motor is controlled to track the desired force curve PD type iterative learning control (ILC) method is introduced to reduce the error caused by wearing position and biological characteristics to improve assistance performance. In order to evaluate assistance performance, the metabolism of four subjects wearing exoskeleton in the situations of that without assistance, assisting both hip extension and hip flexion, and assisting hip extension respectively is measured. The assistant effect is evaluated through the metabolism. Compared with assisting hip joint extension only and wearing exoskeleton with no assistance, results indicate that the decrease in average net metabolism of assisting both hip joint extension and flexion is 0.445 W/kg and 1.027 W/kg respectively, corresponding to the average net metabolism rate decrease is 7.45% and 15.67%.
柔性外骨骼髋关节助力力曲线ILC控制新陈代谢
Flexible exoskeletonHip joint assistanceForce curveILC ControlMetabolism
DING Y,GALIANA I,SIVIY C,et al.IMU-based iterative control for hip extension assistance with a soft exosuit[C]//Proceedings of the 2016 IEEE International Conference on Robotics and Automation(ICRA),May 16-12,2016,Stockholm,Sweden.New York:IEEE,2016:3501-3508.
MASOOD J,ORTIZ J,FERNÁNDEZ J,et al.Mechanical design and analysis of light weight hip joint Parallel Elastic Actuator for industrial exoskeleton[C]//Proceedings of the 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics(BioRob),June 26-29,2016,Singapore.New York:IEEE,2016:631-636.
NEUHAUS PD,NOORDEN JH,CRAIG T J,et al.Design and evaluation of mina:a robotic orthosis for paraplegics[C]//Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics,June 29-July 1,2011,Zurich,Switzerland.New York:IEEE,2011:1-8.
OHTAY,YANOH,SUZUKIR,et al.A two-degree-of-freedom motor-powered gait orthosis for spinal cord injury patients[J].Journal of Engineering in Medicine,2007,221(6):629-639.
李剑锋,李国通,张雷雨,等.穿戴式柔性下肢助力机器人发展现状及关键技术分析[J].自动化学报,2020,46(3):427-438.
LI Jianfeng,LI Guotong,ZHANG Leiyu,et al.Advances and key techniques of soft wearable lower limb power-assisted robots[J].Acta Automatica Sinica,2020,46(3):427-438.
STIENEN AHA,HEKMANEEG,VAN DER HEIM F CT,et al.Self-Aligning exoskeleton axes through decoupling of joint rotations and translations[J].IEEE Transactions on Robotics,2009,25(3):628-633.
周伟杰,韩亚丽,朱松青,等.柔性外骨骼助力机器人发展现状综述[J].南京工程学院学报(自然科学版),2019,17(1):31-38.
ZHOU Weijie,HAN Yali,ZHU Songqing,et al.A review of the development of flexible exoskeleton assisted robots[J].Journal of Nanjing Institute of Technology(Natural Science Edition),2019,17(1):31-38.
ASBECK A T,SCHMIDT K,GALIANA I,et al.Multi-joint soft exosuit for gait assistance[C]//Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA),May 26-30,2015,Seattle,WA.New York:IEEE,2015:6197-6204.
WEHNER M,QUINLIVAN B,AUBIN P M,et al.A lightweight soft exosuit for gait assistance[C]//Proceedings of the 2013 IEEE international conference on robotics and automation,May 6-10,2013,Karlsruhe,Gearmany.New York:IEEE,2013:3362-3369.
LEE S,CREA S,MALCOLM P,et al.Controlling negative and positive power at the ankle with a soft exosuit[C]//Proceedings of the 2016 IEEE International Conference on Robotics and Automation(ICRA),May 16-21,2016,Stockholm,Sweden.New York:IEEE,2016:3509-3515.
KIM J,LEE GHEIMGARTNER R,et al.Reducing the metabolic rate of walking and running with a versatile,portable exosuit[J].Science,2019,365(6454):668-672.
ASBECK A T,SCHMIDT K,WALSH C J.Soft exosuit for hip assistance[J].Robotics and Autonomous Systems,2015,73(C):102-110.
LEE G,DING Y,BUJANDA I G,et al.Improved assistive profile tracking of soft exosuits for walking and jogging with off-board actuation[C]//Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),September 24-28,2017,Vancouver,BC,Canada.New York:IEEE,2017:1699-1706.
KWON J,PARK J H,KU S,et al.A soft wearable robotic ankle-foot-orthosis for post-stroke patients[J].IEEE Robotics & Automation Letters,2019,4(3):2547-2552.
YASUHARA,KEN.Walking assist device with stride management system[J].Honda R&D Technical Review,2009,21:54-62.
DING Y,GALIANA I,ASBECK A,et al.Multi-joint actuation platform for lower extremity soft exosuits[C]//Proceedings of the 2014 IEEE International Conference on Robotics and Automation(ICRA),May 31-June 7,2014,Hongkong,China.New York:IEEE,2014:1327-1334.
KIKUCHI T,TANIDA S,OTSUKI K,et al.Development of intelligent Ankle-Foot Orthosis (i-AFO) with MR fluid brake and control system for gait control[M]//Service Robotics and Mechatronics.Berlin:Springer,2010:75-80.
JORDAN K,CHALLIS J H,NEWELL K M.Walking speed influences on gait cycle variability[J].Gait & Posture,2007,26(1):128-134.
HU H,FANG K,GUAN H,et al.A novel control method of a soft exosuit with plantar pressure sensors[C]//Proceedings of the 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM),July 3-5,2019,Toyonaka,Japan.New York:IEEE,2019:581-586.
WINTER D A.Biomechanics and motor control of human movement[M].Hoboken:John Wiley & Sons,2009:123-127.
KNAPIK J J,REYNOLDS K L,HARMAN E.Soldier load carriage:historical,physiological,biomechanical,and medical aspects[J].Military Medicine,2004,169(1):45-56.
PERRY J,DAVIDS J R.Gait analysis:normal and pathological function[J].Journal of Pediatric Orthopaedics,1992,12(6):815-826.
ASBECK A T,DE ROSSI S M M,HOLT K G,et al.A biologically inspired soft exosuit for walking assistance[J].The International Journal of Robotics Research,2015,34(6):744-762.
XU J X.A survey on iterative learning control for nonlinear systems[J].International Journal of Control,2011,84(7):1275-1294.
JANG T J,CHOI C H,AHN H S.Iterative Learning Control in Feedback Systems[J].Automatica,1995,31(2):243-248.
CHANG Y H,KRAM R.Metabolic cost of generating horizontal forces during human running[J].Journal of Applied Physiology,1999,86(5):1657-1662.
KIPP S,BYRNES W C,KRAM R.Calculating metabolic energy expenditure across a wide range of exercise intensities:the equation matters[J].Applied Physiology,Nutrition,and Metabolism,2018,43(6):639-642.
0
浏览量
7
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构