1.北京建筑大学 机电与车辆工程学院, 北京 100044
2.北京建筑大学 城市轨道交通车辆服役性能保障重点实验室, 北京 100044
刘奇(1997— ),男,广东梅州人,硕士研究生,主要研究方向为机械故障诊断、信号处理与特征提取。
王衍学(1980— ),男,山东济宁人,教授,博士生导师,研究方向为机械系统动态信号处理与特征提取、装备故障诊断与智能维护。
扫 描 看 全 文
刘奇,王衍学.基于同步挤压提取变换的滚动轴承故障诊断研究[J].机械传动,2021,45(01):123-128.
Liu Qi,Wang Yanxue.Research on Fault Diagnosis of Rolling Bearing based on Synchrosqueezing Extracting Transform[J].Journal of Mechanical Transmission,2021,45(01):123-128.
刘奇,王衍学.基于同步挤压提取变换的滚动轴承故障诊断研究[J].机械传动,2021,45(01):123-128. DOI: 10.16578/j.issn.1004.2539.2021.01.020.
Liu Qi,Wang Yanxue.Research on Fault Diagnosis of Rolling Bearing based on Synchrosqueezing Extracting Transform[J].Journal of Mechanical Transmission,2021,45(01):123-128. DOI: 10.16578/j.issn.1004.2539.2021.01.020.
滚动轴承是大型机械设备的重要部件,起着非常重要的作用。当轴承发生故障时,如不及时修复或更换,将严重影响设备的寿命。时频分析方法是一种非常有效的故障特征提取工具,已得到广泛的应用;同时,时频分布的能量聚集性影响故障特征提取效果,因此,一种能量更加集中的时频分析方法对机械信号处理与故障诊断起着至关重要的作用。提出了一种全新的时频域特征提取方法——同步挤压提取变换。该方法主要包含两个步骤:首先,使用同步挤压变换将信号大部分能量聚集到多个小频带范围内,实现信号能量的初步聚集;然后,在同步挤压变换结果中引入一个频率提取算子,该算子可以提取出每个小频带内与信号时变特征最相关的信息并将其保留,从而实现信号能量的再次聚集。仿真信号的分析验证了该方法的可行性。通过对实际轴承信号的分析发现,与先前的时频分析方法相比,该方法效果更佳。
Rolling bearings are important components of large machinery and play a very important role. When the bearing fails, if not repaired or replaced them in time, it will seriously affect the life of the equipment. Time-frequency analysis method is a very effective fault feature extraction tool, which has been widely used. Simultaneously, the energy concentration of time-frequency representation affects the effect of fault feature extraction, so a more concentrated time-frequency analysis method plays a vital role in mechanical signal processing and fault diagnosis. A novel time-frequency domain feature extraction method, synchrosqueezing extracting transform is proposed. This method mainly includes two steps, firstly, the majority of energy of the signal is collected into multiple small frequency bands by using a synchrosqueezing transform, which achieves the initial concentration and reduce the energy loss of the next step. Then, a frequency extracting operator is introduced into the results of the synchrosqueezing transform. This operator can extract the information that is most relevant to the time-varying characteristics of the signal in each small frequency band and retain it, which achieves the concentration again. The analysis of simulation signals verified the feasibility of the method. Finally, by analyzing the actual bearing signals, it is found that the proposed method is more effective than the previous time-frequency analysis methods.
同步挤压变换同步挤压提取变换滚动轴承故障诊断
Synchrosqueezing transformSynchrosqueezing extracting transformRolling bearingFault diagnosis
王鹏,吴光强,栾文博.基于平滑伪维格纳分布与阶次跟踪的汽车变速器啸叫噪声分析[J].机械传动,2014,38(9):128-133.
WANG Peng,WU Guangqiang,LUAN Wenbo.Analysis of vehicle gearbox whine noise based on smoothed pseudo Wigner-Ville distribution and order[J].Journal of Mechanical Transmission,2014,38(9):128-133.
陈雪峰,王诗彬,程礼.航空发动机快变信号的匹配同步压缩变换研究[J].机械工程学报,2019,55(13):13-22.
CHEN Xuefeng,WANG Shibin,CHENG Li.Matching synchrosqueezing transform for aero-engine's signals with fast varying instantaneous frequency[J].Journal of Mechanical Engineering,2019,55(13):13-22.
BOASHASH B,AISSA-El-BEY A.Robust multisensor time-frequency signal processing:a tutorial review with illustrations of performance enhancement in selected application areas[J].Digital Signal Processing,2018,77:153-186.
OROVIC´ I,STANKOVIC´ S,THAYAPARAN T,et al.Multiwindow s-method for instantaneous frequency estimation and its application in radar signal analysis[J].IET Signal Processing,2010,4(4):363-370.
KODERA K,DE VILLEDJALIL C,GENDRIN R.A new method for the numerical analysis of non-stationary signals[J].Physics of the Earth and Planetary Interiors,1976,12(2/3):142-150.
DAUBECHIES I,LU J F,WU H T.Synchrosqueezed wavelet transforms:an empirical mode decomposition-like tool[J].Applied and Computational Harmononic Analysis,2011,30(2):243-261.
LI C,LIANG M.A generalized synchrosqueezing transform for enhancing signal time-frequency representation[J].Signal Processing,2012,92(9):2264-2274.
PENG Z K,MENG G,CHU F L,et al.Polynomial chirplet transform with application to instantaneous frequency estimation[J].IEEE Transactions on Instrumentation and Measurement,2011,60(9):1378-1384.
WANG S,CHEN X,CAI G,et al.Matching demodulation transform and synchrosqueezing in time-frequency analysis[J].IEEE Transactions on Signal Processing,2014,62(1):69-84.
LI C,LIANG M.Time-frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform[J].Mechanical Systms and Signal Processing,2011,26:205-217.
YU G,WANG Z,ZHAO P.Multi-synchrosqueezing transform[J].IEEE Transactions on Industrial Electronics,2019,66(7):5441-5455.
YU G,WANG Z H,ZHAO P,et al.Local maximum synchrosqueezing transform:an energy-concentrated time-frequency analysis tool[J].Mechanical Systms and Signal Processing,2019,117:537-552.
OBERLIN T,MEIGNEN S,PERRIER V.Second-order synchrosqueezing transform or invertible reassignment?Towards ideal time-frequency representations[J].IEEE Transactions on Signal Processing,2015,63(5):1335-1344.
PHAM D H,MEIGNEN S.High-order synchrosqueezing transform for multicomponent signals analysis-with an application to gravitational-wave signal[J].IEEE Transactions on Signal Processing,2017,65:3168-3178.
YU G,YU M,XU C.Synchroextracting transform[J].IEEE Transactions on Industrial Electronics,2017,64(10):8042-8054.
THAKUR G,WU H T.Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples[J].SIAM Journal on Mathematical Analysis,2011,43(5):2078-2095.
ANTONI J,BONNARDOT F,RAAD A,et al.Cyclostationary modelling of rotating machine vibration signals[J].Mechanical Systms and Signal Processing,2004,18(6):1285-1314.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构