1.华南理工大学 机械与汽车工程学院, 广东 广州 510641
2.东莞职业技术学院, 广东 东莞 523808
郑嘉伟(1995— ),男,广东普宁人,硕士研究生,研究方向为故障诊断。
李伟光(1958— ),男,江西永丰人,博士,教授,研究方向为机电一体化及现代检测技术。
扫 描 看 全 文
郑嘉伟,刘其洪,李伟光等.基于PCA和MK-MOMEDA的特征频率提取算法及其应用[J].机械传动,2020,44(12):146-152.
Zheng Jiawei,Liu Qihong,Li Weiguang,et al.Feature Frequency Extraction Algorithm based on PCA and MK-MOMEDA and Its Application[J].Journal of Mechanical Transmission,2020,44(12):146-152.
郑嘉伟,刘其洪,李伟光等.基于PCA和MK-MOMEDA的特征频率提取算法及其应用[J].机械传动,2020,44(12):146-152. DOI: 10.16578/j.issn.1004.2539.2020.12.024.
Zheng Jiawei,Liu Qihong,Li Weiguang,et al.Feature Frequency Extraction Algorithm based on PCA and MK-MOMEDA and Its Application[J].Journal of Mechanical Transmission,2020,44(12):146-152. DOI: 10.16578/j.issn.1004.2539.2020.12.024.
针对柔性薄壁轴承故障特征频率提取的问题,提出了主成分分析(PCA)与多点最优调整的最小熵解卷积(MOMEDA)相结合的特征频率提取算法。算法中用PCA对原始信号作降噪处理,获得重构信号,利用多点峭度(MKurt)提取重构信号中的周期性冲击信号的周期,对理论周期进行修正,进而得到精确的解卷积周期,通过MOMEDA对重构信号进行增强,突出其周期性冲击,可以更有效地提取特征频率。将此方法应用到柔性薄壁轴承的故障特征频率提取上,并与最大相关峭度解卷积(MCKD)算法作对比。结果表明,该方法可将轴承故障冲击与因轴承长短轴交替而产生的周期性冲击分离,消除这种正常的周期性冲击的干扰,有效提取信号中的故障特征频率,效果优于最大相关峭度解卷积算法。
Aiming at the problem of extracting characteristic frequency of flexible thin-walled bearings,a feature frequency extraction algorithm combining principal component analysis (PCA) and multi-point optimally adjusted minimum entropy deconvolution (MOMEDA) is proposed. In the algorithm,PCA is used to perform noise reduction processing on the original signal to obtain a reconstructed signal. The multipoint kurtosis (MKurt) is used to extract the period of the periodic shock signal in the reconstructed signal,and the theoretical period is corrected to obtain an accurate deconvolution period,enhance the reconstructed signal through MOMEDA,highlight its periodic impact,and extract the characteristic frequency more effectively. This method is applied to the fault feature frequency extraction of flexible thin-walled bearings,and compared with the maximum correlation kurtosis deconvolution (MCKD) algorithm. The results show that this method can separate bearing fault shocks from periodic shocks caused by the alternation of the bearing's long and short axes,eliminate the interference of such normal periodic shocks,and effectively extract the fault characteristic frequency in the signal. The effect is better than the maximum correlation kurtosis deconvolution algorithm.
主成分分析多点最优调整的最小熵解卷积多点峭度特征频率提取
PCAMOMEDAMultipoint kurtosisFeature frequency extraction
姜祎,王亚珍,赵坤,等.谐波减速器柔性薄壁轴承的力学特性分析[J].轴承,2017(1):10-14.
JIANG Yi,WANG Yazhen,ZHAO Kun,et al.Mechanical property analysis of flexible thin bearing in harmonic drive[J].Bearing,2017 (1):10-14.
李振,李伟光,赵学智,等.基于主成分分析的特征频率提取算法及应用[J]. 振动.测试与诊断,2018,38(4):834-842.
LI Zhen,LI Weiguang,ZHAO Xuezhi,et al.Feature frequency extraction a lgorithm based on principal component analysis and its application[J].Journal of Vibration,Measurement & Diagnosis,2018,38(4):834-842.
聂振国,赵学智.PCA与SVD信号处理效果相似性与机理分析[J].振动与冲击,2016,35(2):12-17.
NIE Zhenguo,ZHAO Xuezhi.Similarity of signal processing effect between PCA and SVD and its mechanism analysis[J].Journal of Vibration and Shock,2016,35(2):12-17.
WIGGINS R A.Minimum entropy deconvolution[J].Geoexploration,1978,9(16):21-35.
MCDONALD G L,ZHAO Q.Multipoint optimal minimumentropy deconvolution and convolution fix:application tovibration fault detection[J].Mechanical Systems and Signal Processing,2017,82:461-477.
苑宇,马孝江.基于主分量分析的柴油机振动信号特征提取[J].中国机械工程,2007(8):971-975.
YUAN Yu,MA Xiaojiang.Feature extraction from vibration signals of diesel based on PCA[J].China Mechanical Engineering,2007(8):971-975.
吕麒鹏,夏均忠,白云川,等.基于CS和MOMEDA的滚动轴承故障特征提取[J].军事交通学院学报,2019,21(8):47-52.
LU Linpeng,XIA Junzhong,BAI Yunchuan,et al.Fault feature extraction of rolling bearing based on CS and MOMEDA[J].Journal of Military Transportation University,2019,21(8):47-52.
祝小彦,王永杰.基于MOMEDA与Teager能量算子的滚动轴承故障诊断[J].振动与冲击,2018,37(6):104-110.
ZHU Xiaoyan,WANG Yongjie.Fault diagnosis of rolling bearings based on the MOMEDA and teager energy operator[J].Journal of Vibration and Shock,2018,37(6):104-110.
王志坚,王俊元,张纪平,等.基于改进MOMEDA的齿轮箱复合故障诊断[J].振动.测试与诊断,2018,38(1):176-181.
WANG Zhijian,WANG Junyuan,ZHANG Jiping,et al.Fault diagnosis of gearbox based on improved MOMEDA[J].Journal of Vibration,Measurement & Diagnosis,2018,38(1):176-181.
刘文朋,廖英英,杨绍普,等.一种基于多点峭度谱和最大相关峭度解卷积的滚动轴承故障诊断方法[J].振动与冲击,2019,38(2):146-151.
LIU Wenpeng,LIAO Yingying,YANG Shaopu,et al.Fault diagnosis of rolling bearings based on multipoint kurtosis spectrums and the maximum correlated kurtosis deconvolutionmethod[J].Journal of Vibration and Shock,2019,38(2):146-151.
林武文,李振,王娇娇,等.薄壁轴承性能测试平台设计与实现[J].润滑与密封,2017,42(11):100-105.
LIN Wuwen,LI Zhen,WANG Jiaojiao,et al.Design and implementation of performance testing rig for thin-wall bearing[J].Lubrication Engineering,2017,42(11):100-105.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构