1.太原理工大学 机械与运载工程学院, 山西 太原 030024
2.煤矿综采装备山西省重点实验室, 山西 太原 030024
薛璇怡(1994— ),女,山西万荣人,在读硕士研究生,研究方向为机械故障诊断。
庞新宇(1976— )女,山西文水人,博士,副教授,研究方向为机械故障诊断。
扫 描 看 全 文
薛璇怡,庞新宇.基于1-DCNN的行星齿轮箱故障诊断[J].机械传动,2020,44(11):127-133.
Xue Xuanyi,Pang Xinyu.Fault Diagnosis of Planetary Gearbox based on 1-DCNN[J].Journal of Mechanical Transmission,2020,44(11):127-133.
薛璇怡,庞新宇.基于1-DCNN的行星齿轮箱故障诊断[J].机械传动,2020,44(11):127-133. DOI: 10.16578/j.issn.1004.2539.2020.11.021.
Xue Xuanyi,Pang Xinyu.Fault Diagnosis of Planetary Gearbox based on 1-DCNN[J].Journal of Mechanical Transmission,2020,44(11):127-133. DOI: 10.16578/j.issn.1004.2539.2020.11.021.
传统的机器学习方法在行星齿轮箱故障诊断方面存在识别率低、特征提取操作繁琐等问题。为提高行星齿轮箱的诊断效率,提出基于一维深度卷积神经网络(One-dimensional deep convolutional neural network,1-DCNN)的故障诊断方法,将原始信号直接输入到网络中进行诊断。通过对行星齿轮箱行星轮5种故障信号进行训练验证,精度可达100%,且在诊断精度和效率上优于其他常用算法。
Traditional machine learning methods have disadvantages such as low recognition rate and complicated feature extraction operations in the planetary gearbox fault diagnosis. In order to improve the diagnosis efficiency of planetary gearboxes, a fault diagnosis method based on one-dimensional deep convolutional neural network (1-DCNN) is proposed, and the original signals are directly input to the network for diagnosis. The accuracy of diagnosing five kinds of fault signals of planetary gear of planetary gear box can reach 100%, and the diagnostic accuracy and efficiency are better than other commonly used algorithms.
1-DCNN智能诊断特征提取行星齿轮箱
1-DCNN intelligent diagnosisFeature extractionPlanetary gearbox
程宝安,庞新宇,杨兆建,等.基于NeighCoeff和Hilbert包络分析的行星齿轮箱太阳轮故障诊断[J].振动与冲击,2018,37(22):151-157.
CHENG Baoan,PANG Xinyu,YANG Zhaojian,et al.Fault diagnosis of the sun wheel of planetary gearboes based on the NeighCoeff and Hilbert envelope analysis[J].Journal of Vibration and Shock,2018,37(22):151-157.
钱林,康敏.基于小波包与质心粒子群的齿轮箱故障诊断及应用[J].振动与冲击,2016,35(11):191-195.
QIAN Lin,KANG Min.Gearbox fault diagnosis and its application based on wavelet packet and centroid particle swarm algorithm[J].Journal of Vibration and Shock,2016,35(11):191-195.
刘志刚,赵晓燕,张涛,等.基于小波包-神经网络的电厂发电机组故障诊断研究[J].机械传动,2018,42(8):179-182.
LIU Zhigang,ZHAO Xiaoyan,ZHANG Tao,et al.Study on the fault diagnosis of generator unit based on WPD-Neural network[J].Journal of Mechanical Transmission,2018,42(8):179-182.
刘蕴哲,胡金海,任立通,等.基于特征选择与概率神经网络的轴承故障诊断研究[J].机械传动,2016,40(10):48-53.
LIU Yunzhe,HU Jinhai,REN Litong,et al.Study on the bearing fault diagnosis based on feature selection and probabilistic neural network[J].Journal of Mechanical Transmission,2016,40(10):48-53.
王子兰,杨瑞.基于随机森林算法的旋转机械齿轮组故障诊断[J].山东科技大学学报(自然科学版),2019,38(5):104-112.
WANG Zilan,YANG Rui.Fault diagnosis of rotating machinery gearbox based on random forest algorithm[J].Journal of Shandong University of Science and Technology (Natural Science),2019,38(5):104-112.
YAN H,TANG B,DENG L.An enhanced convolutional neural network with enlarged receptive fields for fault diagnosis of planetary gearboxes[J].Computers & Industrial Engineering,2019,107:50-58.
CHENG C,LI J Y,LIU Y M,et al.Deep convolutional neural network-based in-process tool condition monitoring in abrasive belt grinding[J].Computers in Industry,2019,106:1-13.
NASIRI A,TAHERI A,OMIDA M,et al.Intelligent fault diagnosis of cooling radiator based on deep learning analysis of infrared thermal images[J].Applied Thermal Engineering,2019,163:1-13.
李恒,张氢,秦仙蓉,等.基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J].振动与冲击,2018,37(19):124-131.
LI Heng,ZHANG Qing,QIN Xianrong,et al.Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J].Journal of Vibration and Shock,2018,37(19):124-131.
PALAZ D,COLLOBERT R,DOSS M.Estimating phoneme class conditional probabilities from raw speech signal using convolutional neural.Computer science[J].Computer Science,2013:1766-1770.
INCE T,KIRANYAZ S,EREN L,et a1.Real-time motor fault detection by 1-D convolutional neural networks[J].IEEE Transactions on Industrial Electmnics,2016,63(11):7067-7075.
陈仁祥,黄鑫,杨黎霞,等.基于卷积神经网络和离散小波变换的滚动轴承故障诊断[J].振动工程学报,2018,31(5):883-889.
CHEN Renxiang,HUANG Xin,YANG Lixia,et al.Rolling bearing fault identification based on convolution neural network and discrete wavelet transform[J].Journal of Vibration Engineering,2018,31(5):883-889.
周义凯,王宇,赵勇飞,等.基于CNN的人体姿态识别[J].计算机与现代化,2019,(2):49-54.
ZHOU Yikai,WANG Yu,ZHAO Yongfei,et al.Human pose recognition based on CNN[J].Computer and Modernization,2019,(2):49-54.
KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2012:1097-1105.
贾京龙,余涛,吴子杰,等.基于卷积神经网络的变压器故障诊断方法[J].电测与仪表,2017,54(13):62-67.
JIA Jinglong,YU Tao,WU Zijie,et al.Fault diagnosis method of transformer based on convolutional neural network[J].Electrical Measurement & Instrumentation,2017,54(13):62-67.
SAINATH T N,MOHAMED A R,KINGSBURY B,et al.Deep convolutional neural networks for LVCSR[C]//Proceedings of the IEEE International Conference on Acoustics,Speech and Signal Processing.New York:IEEE,2013:8614-8618.
CHEN J L,WANG C L,WANG B,et al.A visualized classification method via t-distributed stochastic neighbor embedding and various diagnostic parameters for planetary gearbox fault identification from raw mechanical data[J].Sensors and Actuators A:Physical,2018,284:52-65.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构