1.北京交通大学 电气工程学院, 北京 100044
况增平(1997— ),男,江西高安人,硕士研究生,研究方向为机器学习、模式识别。
佟庆彬(1974— ),男,山东济宁人,教授,博士生导师,研究方向为人工智能下的故障预测与健康管理,大数据下的故障诊断、损伤评估及寿命预测,信号分析与处理等。
扫 描 看 全 文
况增平,佟庆彬,杜婧等.蛙跳算法优化品质因子的共振稀疏分解方法[J].机械传动,2020,44(11):34-40.
Kuang Zengping,Tong Qingbin,Du Jing,et al.Resonance Sparse Decomposition Method for Optimizing Quality Factor of Frog Leaping Algorithm[J].Journal of Mechanical Transmission,2020,44(11):34-40.
况增平,佟庆彬,杜婧等.蛙跳算法优化品质因子的共振稀疏分解方法[J].机械传动,2020,44(11):34-40. DOI: 10.16578/j.issn.1004.2539.2020.11.006.
Kuang Zengping,Tong Qingbin,Du Jing,et al.Resonance Sparse Decomposition Method for Optimizing Quality Factor of Frog Leaping Algorithm[J].Journal of Mechanical Transmission,2020,44(11):34-40. DOI: 10.16578/j.issn.1004.2539.2020.11.006.
由于滚动轴承在工程实际中的应用场景复杂多变,早期的滚动轴承故障容易被高强背景的噪声所掩盖,传统的故障特征提取方法效果不理想。针对现有共振稀疏分解方法的品质因子手动选取不严谨的问题,提出蛙跳算法优化参数模型,将品质因子进行蛙跳算法优化,再将得到的最优品质因子组合输入到共振稀疏分解模型中进行处理,得到低共振分量,将低共振分量进行Hilbert解调分析。设定低共振分量的峭度值最大为目标,进行蛙跳迭代寻优,最终实现了故障频率的识别。
Due to the complex and varied application scenarios of rolling bearings in engineering practice, early rolling bearing failures are easily masked by high-intensity background noise, and traditional fault feature extraction methods are not ideal. Aiming at the rigorous manual selection of the quality factors of the existing resonance sparse decomposition method, a frog leaping algorithm optimization parameter model is proposed, and the quality factors are optimized by the frog leaping algorithm, then the optimal quality factor combination is input into the resonant sparse decomposition model for processing, the low resonance component is obtained, and the low resonance component is subjected to Hilbert demodulation analysis. The maximum kurtosis value of the low resonance component is set as the goal, and iterative optimization of frog leaping is performed to finally identify the fault frequency.
滚动轴承共振稀疏分解品质因子蛙跳算法
Rolling bearingResonance sparse decompositionQuality factorFrog leaping algorithm
SELESNICK I W.Resonance-based signal decomposition:a new sparsity-enabled signal analysis method[J].Signal Processing,2010,91(12):2793-2809.
SELESNICK I W.Wavelet transform with tunable Q-factor[J].IEEE Transactions on Signal Processing,2011,59(8):3560-3575.
BOBIN J,STARCK J L,FADILI J M,et al.Morphological component analysis:an adaptive threshoding strategy[J].IEEE Transactions on Image Processing,2007,16(11):2675-2681.
刘一鸣.基于信号共振稀疏分解的风电机组齿轮箱故障诊断[D].北京:华北电力大学,2019:51-59.
LIU Yiming.Fault diagnosis of gearbox of wind turbine based on signal resonance sparse decomposition[D].Beijing:North China Electric Power University,2019:51-59.
李星,于德介,张顶成.基于最优品质因子信号共振稀疏分解的滚动轴承故障诊断[J].振动工程学报,2015,28(6):998-1005.
LI Xing,YU Dejie,ZHANG Dingcheng.Fault diagnosis of rolling bearings based on resonance sparse decomposition of optimal quality factor signal[J].Journal of Vibration Engineering,2015,28(6):998-1005.
胡斯念.自适应变分模式分解方法及其在机械故障诊断中的应用[D].武汉:武汉科技大学,2019:18-22.
HU Sinian.Adaptive variational mode decomposition method and its application in mechanical fault diagnosis[D].Wuhan:Wuhan University of Science and Technology,2019:18-22.
艾延廷,方妍,田晶.峭度准则EMD与空域相关结合的滚动轴承故障特征提取[J].机械设计与制造,2019(12):213-216.
AI Yanting,FANG Yan,TIAN Jing.Fault feature extraction of rolling bearings combined with KMD criterion EMD and airspace correlation[J].Mechanical Design & Manufacturing,2019(12):213-216.
EUSUFF M,LANSEY K,PASHA F.Shuffled frog-leaping algorithm:a memetic meta-heuristic for discrete optimization[J].Engineering Optimization,2006,38(2):129-154.
任立群.基于蛙跳算法的无线Mesh网QoS路由算法[J].聊城大学学报(自然科学版),2010,23(1):82-84.
REN Liqun.QoS-based routing algorithm for wireless mesh networks based on frog hopping algorithm[J].Journal of Liaocheng University (Natural Science Edition),2010,23(1):82-84.
马洪斌.基于变分模态分解的滚动轴承故障检测方法研究[D].北京:北京交通大学,2018:33-37.
MA Hongbin.Research on rolling bearing fault detection method based on variational modal decomposition[D].Beijing:Beijing Jiaotong University,2018:33-37.
张勇.基于共振稀疏分解的滚动轴承早期微弱故障诊断[J].中国工程机械学报,2017,15(2):182-188.
ZHANG Yong.Early weak fault diagnosis of rolling bearings based on resonance sparse decomposition[J].Chinese Journal of Engineering Machinery,2017,15(2):182-188.
AFONSO M V,BIOUCAS-DIAS J M,FIGUEIREDO M A T.Fast image recovery using variable splitting and con-strained optimization [J].IEEE Transaction on Image Processing,2010,19(9):2345-2356.
LÜ Y,ZHU Q,YUAN R.Fault diagnosis of rolling bearing based on fast nonlocal means and envelop spectrum[J].Sensors,2015,15(1):1182-1198.
屈梁生,何正嘉.机械故障诊断学[M].上海:上海科学技术出版社,1986:86-89.
QU Liangsheng,HE Zhengjia.Diagnostics of mechanical faults[M].Shanghai:Shanghai Science and Technology Press,1986:86-89.
赵学智,叶邦彦,林颖.奇异值分解对轴承振动信号中调幅特征信息的提取[J].北京理工大学学报,2011,31(5):572-577.
ZHAO Xuezhi,YE Bangyan,LIN Ying.Extraction of amplitude modulation feature information in bearing vibration signals by singular value decomposition[J].Journal of Beijing Institute of Technology,2011,31(5):572-577.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构