1.大连交通大学 机车车辆工程学院, 辽宁 大连 116028
李永华(1971— ),女,黑龙江绥化人,博士,教授,博士研究生导师,研究方向为车辆结构分析与现代设计方法、车辆结构疲劳可靠性分析、机械产品数字仿真与优化设计、质量与RAMS工程。
扫 描 看 全 文
李永华,魏武松,张旭.基于多项式响应面代理模型的齿轮修形量优化[J].机械传动,2020,44(11):27-34.
Li Yonghua,Wei Wusong,Zhang Xu.Optimization of Gear Modification Amount based on Polynomial Response Surface Proxy Model[J].Journal of Mechanical Transmission,2020,44(11):27-34.
李永华,魏武松,张旭.基于多项式响应面代理模型的齿轮修形量优化[J].机械传动,2020,44(11):27-34. DOI: 10.16578/j.issn.1004.2539.2020.11.005.
Li Yonghua,Wei Wusong,Zhang Xu.Optimization of Gear Modification Amount based on Polynomial Response Surface Proxy Model[J].Journal of Mechanical Transmission,2020,44(11):27-34. DOI: 10.16578/j.issn.1004.2539.2020.11.005.
针对多因素影响下齿轮修形量难以确定的问题,基于多项式响应面代理模型和粒子群优化算法,对齿轮修形量进行优化。首先,综合考虑轴和轴承的影响,对齿轮传动装置进行参数化建模,并对齿轮模型的传动线性误差、齿面最大接触应力和单位法向载荷进行仿真分析,确定齿轮修形方式,进行复合修形;其次,根据模型参数及分析结果,确定各修形参数的范围,对修形参数进行正交试验设计,并对试验数据进行拟合,建立多项式响应面代理模型;最后,运用粒子群算法对代理模型进行寻优,得到齿轮最佳修形量。结果表明,拟合得到的多项式响应面代理模型具有良好的精度,能精确地拟合齿轮修形参数与最大接触应力的关系;利用粒子群算法得到的最佳修形量进行齿轮修形,能够使齿轮啮合过程的最大接触应力减小、传动误差减少,偏载现象得到有效改善。
Aiming at the problem that gear modification is difficult to determine under the influence of multiple factors, the gear modification is optimized based on the polynomial response surface proxy model and particle swarm optimization algorithm. Firstly, considering the influence of the shaft and the bearing, the parametric modeling of the gear transmission device is carried out, and the transmission linear error, the maximum contact stress of the tooth surface and the unit normal load of the gear model are simulated and analyzed to determine gear modification mode for composite modification. Secondly, according to the model parameters and analysis results, the range of each shape modification parameter is determined, the orthogonal test design on the practice parameter is performed, and the test data is fitted to establish a polynomial response surface model. Finally, the particle swarm optimization algorithm is used to optimize the response surface model to obtain the optimal amount of gear modification. The results show that the fitted polynomial response surface proxy model has good accuracy and can accurately simulate the relationship between the gear modification parameters and the maximum contact stress. The optimal modification amount obtained by the particle swarm algorithm is used for gear modification, the maximum contact stress of the gear meshing process is reduced, the transmission error is reduced, and the eccentric load phenomenon is effectively improved.
复合修形正交试验法多项式响应面粒子群算法
Composite modificationOrthogonal test methodPolynomial response surfaceParticle swarm optimization
蒋进科,刘钊,刘红梅.齿面磨损最小直齿锥齿轮Ease-off修形设计与分析[J].西安交通大学学报,2020(6):1-9.
JIANG Jinke.LIU Zhao.LIU Hongmei.Design and analysis for straight bevel gears with ease-off flank modification based on minimal wear[J].Journal of Xi'an Jiaotong University,2020(6):1-9.
王春燕,史朋真.基于KISSsoft斜齿轮齿面的优化修形[J].机械传动,2018,42(8):85-90.
WANG Chunyan,SHI Pengzhen.Optimal modification of helical gear tooth surface based on KISSsoft[J].Journal of Mechanical Transmission,2018,42(8):85-90.
汤亮,何仁杰,龚发云,等.基于兆瓦级风电齿轮箱传动特性的齿轮修形研究[J].武汉大学学报(工学版),2019,52(5):457-464.
TANG Liang,HE Renjie,GONG Fayun,et al.Research on gear modification based on transmission characteristics of megawatt wind turbine gearbox[J].Engineering Journal of Wuhan University,2019,52(5):457-464.
杨周,张静,张义民,等.基于可靠性稳健优化设计的齿轮轮齿修形量[J].东北大学学报(自然科学版),2016,37(3):368-372.
YANG Zhou,ZHANG Jing,ZHANG Yimin,et al.gear tooth modification based on reliability robust optimization design[J].Journal of Northeastern University(Natural Science Edition),2016,37(3):368-372.
张容川,周云山,胡哓岚,等.双排行星齿轮系统的齿轮优化修形[J].汽车工程,2018,40(9):1118-1124.
ZHANG Rongchuan,ZHOU Yunshan,HU Xiaolan,et al.The optimized gear modification for double-row planetary gear train[J].Automotive Engineering,2018,40(9):1118-1124.
JAKUB A K,DOMENICO M.Multi-objective micro-geometry optimization of gear tooth supported by response surface methodology[J].Mechanism and Machine Theory,2017,109(5):278-295.
杨硕文,唐进元.一种新的直齿轮复合修形设计方法[J].中南大学学报(自然科学版),2019,50(5):1082-1088.
YANG Shuowen,TANG Jinyuan.A new design method for compound modification of spur gear[J].Journal of Central South University(Natural Science Edition),2019,50(5):1082-1088.
WANG C.Optimization of tooth profile modification based on dynamic characteristics of helical gear pair[J].Transactions of Mechanical Engineering,2019,43(1):631-639.
REN Z Y,MAO S M,GUO W C,et al.Tooth modification and dynamic performance of the cycloidal drive[J].Mechanical Systems and Signal Processing,2017,85(2):857-866.
张迎辉,侯庚,何卫东,等.大型矿用电铲推压减速器齿轮齿向修形研究[J].机械强度,2019,41(3):682-688.
ZHANG Yinghui,HOU Geng,HE Weidong,et al.Research on axial modification of crowd reducer gears of large mining electric excavator[J].Journal of Mechanical Strength,2019,41(3):682-688.
FARHAD S S,MOSLEM M,FRANCESCO P.Nonlinear vibration of the spiral bevel gear with a novel tooth surface modification method[J].Meccanica,2019,54(7):1071-1081.
钱小辉,马骁妍,秦中华,等.基于正交试验的玻璃壳热应力影响因素分析[J].机械工程学报,2019,55(12):91-98.
QIAN Xiaohui,MA Xiaoyan,QIN Zhonghua,et al.Analysis of glass shell’s thermal stress based on orthogonal experiment[J].Journal of Mechanical Engineering,2019,55(12):91-98.
臧孟炎,董豪哲,彭国民,等.基于正交试验设计的变速器啸叫特性优化[J].汽车工程,2018,40(6):713-718.
ZANG Mengyan,DONG Haozhe,PENG Guomin,et al.An optimization on whine noise characteristics of transmission based on orthogonal experimental design[J].Automotive Engineering,2018,40(6):713-718.
崔宝珍,孔维娜,马恺.多项式响应面代理模型在立柱结构优化中的应用[J].机械设计,2017,34(4):44-48.
CUI Baozhen,KONG Weina,MA Kai.Application of polynomial response surface surrogate model in the large column structure optimization[J].Journal of Machine Design,2017,34(4):44-48.
智鹏鹏,李永华,陈秉智.考虑参数不确定性的转向架构架结构强度分析[J].中国机械工程,2019,30(1):22-29.
ZHI Pengpeng,LI Yonghua,CHEN Bingzhi.Structural strength analysis of bogie frames considering parameter uncertainty[J].China Mechanical Engineering,2019,30(1):22-29.
王春华,郭月,姜宗帅.基于改进粒子群算法的行星齿轮传动多目标可靠性优化设计[J].机械强度,2018,40(6):1364-1370.
WANG Chunhua,GUO Yue,JIANG Zongshuai.Multi-objective reliability optimization design of planetary gear transmission based on improved particle swarm algorithm[J].Journal of Mechanical Strength,2018,40(6):1364-1370.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构