1.西安工程大学 电子信息学院, 陕西 西安 710048
2.陕西学前师范学院 信息工程学院, 陕西 西安 710100
闫鑫(1996— ),男,山西浑源人,硕士研究生,研究方向为智能机器人控制。
王晓华(1972— ),女,黑龙江齐齐哈尔人,教授,硕士生导师,研究方向为智能机器人及模式识别。
扫 描 看 全 文
闫鑫,马丽萍,王晓华等.基于倍四元数的缝纫机器人运动学分析[J].机械传动,2020,44(10):68-73.
Yan Xin,Ma Liping,Wang Xiaohua,et al.Kinematics Analysis of Sewing Robot based on Double Quaternion[J].Journal of Mechanical Transmission,2020,44(10):68-73.
闫鑫,马丽萍,王晓华等.基于倍四元数的缝纫机器人运动学分析[J].机械传动,2020,44(10):68-73. DOI: 10.16578/j.issn.1004.2539.2020.10.010.
Yan Xin,Ma Liping,Wang Xiaohua,et al.Kinematics Analysis of Sewing Robot based on Double Quaternion[J].Journal of Mechanical Transmission,2020,44(10):68-73. DOI: 10.16578/j.issn.1004.2539.2020.10.010.
针对传统D-H法以及旋量法进行机器人运动学分析过程中存在运算效率低、奇异性的问题,采用倍四元数求解了缝纫机器人的运动学参数。建立倍四元数形式的缝纫机器人的运动学方程,应用消元法构造Dixon结式,实现运动学参数求解。在受限工作范围内进行运动学分析仿真,结果表明,该方法运算效率高,较D-H法在速度上提高了10%左右,可为机器人纺织缝纫过程中的运动控制提供理论依据。
Aiming at the problems of low calculation efficiency and singularity in the traditional D-H method and spinor method for robot kinematics analysis, the kinematics parameters of sewing robot are solved by using double quaternion. The kinematics equations of the sewing robot in double quaternion form are established, and the Dixon resultant is constructed using the elimination method to solve the kinematic parameters. The kinematics simulation is performed in a limited working range. The simulation results show that the method has high computing efficiency, which is about 10% faster than the D-H method, and can provide a theoretical basis for the motion control of the robot textile sewing process.
四元数法倍四元数法Dixon消元缝纫机器人运动学工作空间
Quaternion methodDouble quaternion methodDixon eliminationSewing robotKinematicsWorkspace
于靖军,刘辛军,丁希仑.机器人机构学的数学基础[M].北京:机械工业出版社,2016:82-99.
YU Jingjun,LIU Xinjun,DING Xilun.The mathematical basis of robot mechanism[M].Beijing:Machinery Industry Press,2016:82-99.
韦贵炜,徐振邦,赵智远,等.线驱动连续型机械臂设计与运动学仿真[J].机械传动,2019,43(11):32-38.
WEI Guiwei,XU Zhenbang,ZHAO Zhiyuan,et al.Design and kinematics simulation of a line-driven continuous robotic arm[J].Journal of Mechanical Transmission,2019,43(11):32-38.
黄俊杰,胡博炜,宋金典.一种3-PRS并联机构正向运动学求解方法[J].机械传动,2019,43(8):98-102.
HUANG Junjie,HU Bowei,SONG Jindian.A solution to the forward kinematics of 3-PRS parallel mechanism[J].Journal of Mechanical Transmission,2019,43(8):98-102.
理查德·摩雷,李泽湘,夏恩卡·萨里特里.机器人操作的数学导论[M].徐卫良,钱瑞明,译.北京:机械工业出版社,1998:51-70.
MOREY Richard,LI Zexiang,SARRITRI Shanka.An introduction to mathematics for robot operation[M].Xu Weiliang,Qian Ruiming,Jr.Beijing:Mechanical Industry Press,1998:51-70.
倪振松,廖启征,吴莘馨.基于四元数矩阵与Groebner基的6R机器人运动学逆解算法[J].清华大学学报(自然科学版),2013,53(5):683-687.
NI Zhensong,LIAO Qizheng,WU Xinxin.Inverse algorithm of 6R robot kinematics based on quaternion matrix and groebner basis[J].Journal of Tsinghua University(Natural Science),2013,53(5):683-687.
宋婧,方康玲.基于倍四元数的机器人逆运动学分析[J].机械与电子,2010(12):67-69.
SONG Jing,FANG Kangling.Analysis of robot inverse kinematics based on double quaternions[J].Machinery and Electronics,2010(12):67-69.
乔曙光,廖启征,黄昔光.倍四元数及其在串联机构运动分析中的应用[J].机械设计与制造,2008(2):36-38.
QIAO Shuguang,LIAO Qizheng,HUANG Xiguang.Double quaternion and its application in motion analysis of tandem mechanism[J].Mechanical Design and Manufacturing,2008(2):36-38.
CLIFFORD MA.Preliminary sketch of biquaternions[J].Proceedings of the London Mathematical Society,1871,s1-4(1):381-395.
GE Q J.On the matrix algebra realization of the theory of biquaternions[J].Journal of Mechanical Design,1998,120(3):425-432.
GE Q J,CHANG C,VARSHNEY A,et al.On the use of quaternions,dual quaternions,and double quaternions for freeform motion synthesis[J].Mechanical Design and Research,2004,20(z1):147-150.
MCCARTHY J M.Mechanisms synthesis theory and the design of robots[C]//Proceedings of the 2000 IEEE International Conference on Robotics and Automation,April 24-28,2000,San Francisco,CA,USA.New York:IEEE,2000:55-59.
PEREZ-GRACIA A,MCCARTHY J M.Dimensional synthesis of spatial RR robots[J].Advances in Robot Kinematics,2000:93-103.
QIAO S G,LIAO Q Z,WEI S M.Inverse kinematic analysis of the general 6R serial manipulators based on double quaternions[J].Mechanism and Machine Theory,2009,45(2):193-199.
DIXON A L.The eliminant of three quantics in two independent variables[J].Proceedings of the London Mathematical Society,1908:468-478.
DEEPAK K,TUSHAR S,LU Y.Algebraic and geometric reasoning using dixon resultants[J].Proceeding of ACM 0ISSAC,1996:99-107.
CAO Y,QI S P,LU K,et al.An integrated method for workspace computation of robot manipulator[C]//2009 International Joint Conference on Computational Sciences and Optimization,April 24-26,2009,Sanya,Hainan,China.New York:IEEE,2009:309-312.
BOTTUR D,MARTELLI S,FIORINI P.Ageometric method for robot workspace computation[C]//Proceedings of the 11th International Conference on Autonomous Robots and System,Verona.Verona:Ve-rona University Publications,2003:17-22.
刘燕德,王观田,王均刚,等.水果无损采摘机械手工作空间分析及参数确定[J].农机化研究,2019,41(4):12-17.
LIU Yande,WANG Guantian,WANG Jungang,et al.Workspace analysis and parameter determination of fruit nondestructive picking manipulator[J].Journal of Agricultural Mechanization Research,2019,41(4):12-17.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构