1.沈阳工业大学 机械工程学院, 辽宁 沈阳 110870
刘杰(1980— ),男,河南南阳人,副教授,主要研究方向为智能运维与健康管理。
扫 描 看 全 文
刘杰,李环宇,赵伟强.基于PCA和灰色关联的齿根裂纹损伤程度识别[J].机械传动,2020,44(09):133-139.
Liu Jie,Li Huanyu,Zhao Weiqiang.Recognition of Damage Degree of Tooth Root Crack based on PCA and Grey Relational[J].Journal of Mechanical Transmission,2020,44(09):133-139.
刘杰,李环宇,赵伟强.基于PCA和灰色关联的齿根裂纹损伤程度识别[J].机械传动,2020,44(09):133-139. DOI: 10.16578/j.issn.1004.2539.2020.09.021.
Liu Jie,Li Huanyu,Zhao Weiqiang.Recognition of Damage Degree of Tooth Root Crack based on PCA and Grey Relational[J].Journal of Mechanical Transmission,2020,44(09):133-139. DOI: 10.16578/j.issn.1004.2539.2020.09.021.
在齿轮齿根裂纹故障检测方面,利用倒频谱分析可以比较损伤程度的轻重,但很难具体量化损伤程度范围。为实现损伤程度的量化检测,提出采用主成分分析(Principal Component Analysis,PCA)与灰色关联分析(Grey Relational Analysis,GRA)相结合的方法。首先,利用能量法计算含不同齿根裂纹的齿轮副时变啮合刚度,分析不同损伤程度的响应,并结合损伤检测统计指标进行量化检测,通过PCA算法,对多维损伤检测统计指标进行降维优化后,计算待检目标序列与各个比较状态序列的关联度,用关联度表征裂纹损伤程度。在理论仿真的基础上,进行实验验证。结果表明,倒谱分析可有效地识别出齿根裂纹故障,损伤程度越大,倒谱的尖峰幅值越大。PCA与GRA结合算法与GRA算法计算的关联度相比更大,区分度也更加明显。并可以有效地量化待检目标的损伤程度,为齿根裂纹的定量识别提供理论依据。
In the aspect of root crack fault detection, the severity of damage can be compared by cepstrum analysis, but it is impossible to quantify the extent of damage. In order to realize quantitative detection of damage degree, the method of Principal Component Analysis (PCA) and Grey Relational Analysis (GRA) are combined to use. Firstly, the energy method is used to calculate the time-varying meshing stiffness of gear pairs with different root cracks and analyze the response of different damage degrees. Then, statistical indicators of damage detection are also combined to carry out quantitative detection. Through PCA algorithm, the dimensional reduction of the multidimensional statistical indicators of damage detection is optimized. The relational degree between the target sequence to be examined and each comparison state sequence is calculated. The degree of crack damage is characterized by relational degree. On the basis of theoretical simulation, experimental verification is carried out. The results show that cepstrum analysis can effectively identify the root crack fault. The higher the damage degree, the higher the peak amplitude of cepstrum. The relational degree of PCA and GRA combined algorithm is larger and the discrimination degree is more obvious than that of direct GRA calculation. The damage degree of the target will can be effectively quantified, the theoretical basis for quantitative identification of tooth root crack is provided.
齿根裂纹主成分分析灰色关联分析故障识别损伤检测
Tooth root crackPCAGRAFailure identificationDamage detection
李辉,郑海起,唐力伟.基于EMD和功率谱的齿轮故障诊断研究[J].振动与冲击,2006,25(1):133-135.
LI Hui,ZHENG Haiqi,TANG Liwei.Study on fault diagnosis of gear crack based on emd and pow er spectrum analysis[J].Journal of Vibration and Shock,2006,25(1):133-135.
李辉,郑海起,唐力伟.Teager-Huang变换在齿轮裂纹故障诊断中的应用[J].振动、测试与诊断,2010,30(1):7-11.
LI Hui,ZHENG Haiqi,TANG Liwei.Application of teager-huang transform to crack fault diagnosis of gear[J].Journal of Vibration,Measurement & Diagnosis,2010,30(1):7-11.
辛玉,李舜酩,王金瑞,等.基于迭代经验小波变换的齿轮故障诊断方法[J].仪器仪表学报,2018,39(11):79-86.
XIN Yu,LI Shunming,WANG Jinrui,et al.Gear fault diagnosis method based on iterative empirical wavelet transform[J].Chinese Journal of Scientific Instrument,2018,39(11):79-86.
沈超,杨建伟,姚德臣,等.基于改进局部均值分解和流形学习的齿轮故障诊断研究[J].机械传动,2018,42(1):137-142.
SHAN Chao,YANG Jianwei,YAO Dechen,et al.Research of the gear fault diagnosis based on improved LMD and manifold learning[J].Journal of Mechanical Transmission,2018,42(1):137-142.
吴春志,江鹏程,冯辅周,等.基于一维卷积神经网络的齿轮箱故障诊断[J].振动与冲击,2018,37(22):51-56.
WU Chunzhi,JIANG Pengcheng,FENG Fuzhou,et al.Faults diagnosis method for gearboxes based on a 1-D convolutional neural network[J].Journal of Vibration and Shock,2018,37(22):56-61.
Li B,ZHANG X,WU J.New procedure for gear fault detection and diagnosis using instantaneous angular speed[J].Mechanical Systems and Signal Processing,2017,85:415-428.
WANG C,KANG Y,LIAO C.Using bayesian networks in gear fault diagnosis[J].Applied Mechanics and Materials,2013,2240:2416-2420.
ZHENG H,LI Z,CHEN X.Gear fault diagnosis based on continuous wavelet transform[J].Mechanical Systems and Signal Processing,2002,16(2/3):447-457
李忱,卫晓娟,李宁洲.基于QPSO-Volterra的齿轮裂纹故障特征提取[J],机械传动,2019,43(7):6-11.
LI Chen,WEI Xiaojuan,LI Ningzhou.Fault feature extraction of gear crack based on QPSO-volterra[J].Journal of Mechanical Transmission,2019,43(7):6-11.
SAMUFL P D,PINES D J.A review of vibration-based techniques for helicopter transmission diagnostics[J].Journal of Sound and Vibration,2005,282(1/2):475-508.
曹精明,邵忍平,胡文涛.HOC与EMD结合的齿轮损伤检测研究[J].仪器仪表学报,2011,32(4):729-735.
CAO Jingming,SHAO Renping,HU Wentao.Gear damage detection based on higher or dercumulant combined with empirical mode decomposition[J].Chinese Journal of Scientific Instrument,2011,32(4):729-735.
古莹奎,杨子茜,朱繁泷.基于主成分分析的齿轮箱故障特征融合分析[J].中国机械工程,2015,26(11):1532-1537.
GU Yingkui,YANG Zixi,ZHU Fanlong.Gearbox fault feature fusion based on principal component analysis[J].China Mechanical Engineering,2015,26(11):1532-1537.
孙琦,刘新厂,张兵,等.直齿轮系齿根裂纹损伤程度检测方法[J].振动、测试与诊断,2019,39(2):327-333.
SUN Qi,LIU Xinchang,ZHANG Bing,et al.Detection method of spur gear tooth root crack damage degree[J].Journal of Vibration,Measurement & Diagnosis,2019,39(2):327-333.
王宏超,陈进,董广明,等.基于快速kurtogram算法的共振解调方法在滚动轴承故障特征提取中的应用[J].振动与冲击,2013,32(1):35-37.
WANG Hongchao,CHEN Jin,DONG Guangming,et al.Application of resonance demodulation in rolling bearing fault feature extraction based on fast computation of kurtogram[J].Journal of Vibration and Shock,2013,32(1):35-37.
TAO B,ZHU L,DING H,et al.An alternative diagnostic index of rolling element bearings-a comparison study[J].Reliability Engineering and System Safety,2007,92(5):660-670.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构