1.安徽理工大学 机械工程学院, 安徽 淮南 232001
2.中国矿业大学 江苏省矿山机电装备重点实验室, 江苏 徐州 221116
李成(1996— ),男,安徽蚌埠市人,硕士研究生,主要研究方向为流体传动与控制技术。
王传礼(1964— ),男,安徽淮南市人,博士,教授,博士生导师,主要研究方向为精密驱动技术、流体传动与控制技术等。
扫 描 看 全 文
李成,王传礼,何涛等.异形非对称柔性铰链力学特性的研究[J].机械传动,2020,44(09):34-39.
Li Cheng,Wang Chuanli,He Tao,et al.Study on the Mechanical Characteristic of Special-shaped Asymmetric Flexure Hinge[J].Journal of Mechanical Transmission,2020,44(09):34-39.
李成,王传礼,何涛等.异形非对称柔性铰链力学特性的研究[J].机械传动,2020,44(09):34-39. DOI: 10.16578/j.issn.1004.2539.2020.09.006.
Li Cheng,Wang Chuanli,He Tao,et al.Study on the Mechanical Characteristic of Special-shaped Asymmetric Flexure Hinge[J].Journal of Mechanical Transmission,2020,44(09):34-39. DOI: 10.16578/j.issn.1004.2539.2020.09.006.
基于大柔度混合柔性铰链设计理念,提出了一种非对称式直圆摆线混合柔性铰链,并对其力学特性进行了研究,。,基于悬臂梁弯曲理论和微元法下的胡克定律,通过选取合适的积分变量与中间变量,得到较为简洁的转动柔度和拉伸柔度的计算公式,并给出了最大应力的计算公式;讨论了转动柔度和最大应力随参数的变化趋势,比较了结构参数对转动柔度和最大应力影响的显著程度。结果表明,转动柔度、拉伸柔度和最大应力解析式的最大误差分别在7%、5%和5%以内;转动柔度与弹性模量、宽度和最小厚度成反比,与直圆半径和拱高参数成正比,且对最小厚度的变化最为敏感,宽度次之,拱高参数和直圆半径最弱;最大应力与宽度、最小厚度和直圆半径成反比,且对最小厚度的变化最为敏感,宽度次之,直圆半径最弱。
Based on the design concept of hybrid flexure hinge with large flexibility, an asymmetric hybrid flexure hinge with straight circle cycloid is proposed, and its mechanical characteristics are studied. Based on the bending theory of cantilever beam and Hooke's law under the micro element method, by selecting the appropriate integral variable and intermediate variable, the relatively simple calculation formula of rotational flexibility and tensile flexibility is obtained, and the general calculation formula of the maximum stress is given. The variation trend of rotational flexibility and maximum stress with parameters is discussed. The influence degree of structural parameters on rotational flexibility and maximum stress is compared. The results show that the maximum errors of the analytical expressions of rotational flexibility, tensile flexibility and maximum stress are within 5%, 7% and 5%, respectively. The rotational flexibility is inversely proportional to the elastic modulus, width and minimum thickness, and is directly proportional to the straight circle radius and arch height parameters, and is most sensitive to the change of the minimum thickness, followed by the width, and the arch height and straight circle radius are the weakest. The maximum stress is inversely proportional to the width, minimum thickness and the radius of the straight circle, and it is most sensitive to the change of the minimum thickness, followed by the width, and the radius of the straight circle is the weakest.
柔性铰链直圆摆线柔度最大应力敏感性
Flexure hingeStraight circle cycloidFlexibilityMaximum stressSensitivity
吴鹰飞,周兆英.柔性铰链的应用[J].中国机械工程,2002(18):91-94.
WU Yingfei,ZHOU Zhaoying.Application of flexible hinges[J].China Mechanical Engineering,2002(18):91-94.
刘敏,张宪民.基于类Ⅴ型柔性铰链的微位移放大机构[J].光学精密工程,2017,25(4):467-476.
LIU Min,ZHANG Xianmin.Micro-displacementamplifier based on quasi-v-shaped flexure hinge[J].Optics and Precision Engineering,2017,25(4):467-476.
徐彬,王传礼,喻曹丰,等.基于GMA柔性换向放大机构的结构设计与优化[J].机械传动,2019,43(10):62-67.
XU Bin,WANG Chuanli,YU Caofeng,et al.Structural design and optimization of flexible commutation amplification mechanism based on giant magnetostrictive actuator[J].Journal of Mechanical Transmission,2019,43(10):62-67.
PAROS J,WEISBORO L.How to design flexure hinges[J].Machine Design,1965,37(27):151-156.
陈贵敏,刘小院,贾建援.椭圆柔性铰链的柔度计算[J].机械工程学报,2006(S1):111-115.
CHEN Guimin,LIU Xiaoyuan,JIA Jianyuan.Compliance calculation of elliptical flexure hinge[J].Journal of Mechanical Engineering,2006(S1):111-115.
焦陈磊,王桂莲,周海波,等.结构参数对抛物线型柔性铰链刚度的影响[J].机械设计,2017,34(11):63-67.
JIAO Chenlei,WANG Guilian,ZHOU Haibo,et al.Effect of structural parameters on the stiffness of parabolic flexure hinge[J].Journal of Mechanical Design,2017,34(11):63-67.
张志杰,袁怡宝.基于闭环柔度解析式的双曲线形柔性铰链研究[J].仪器仪表学报,2007(6):1055-1059.
ZHANG Zhijie,YUAN Yibao.Research on half hyperbolic flexure hinges based on closed-form compliance equations[J].Chinese Journal of Scientiific Instrument,2007(6):1055-1059.
LI Q,PAN C,XU X.Closed-form compliance equations for power-function-shaped flexure hinge based on unit-load method[J].Precision Engineering,2013,37(1):135-145.
徐宁.基于柔性机构的快速反射镜研究[D].长春:中国科学院长春光学精密机械与物理研究所,2018:39-48.
XU Ning.Research on fast steering mirror based on compliant mechanisms[D].Changchun:Changchun Institute of Optics,Fine Machinics and Physics,Chinese Academy of Sciences,2018:39-48.
NICOLAE L,JEFFREY S N P,EPHRAHIM G,et al.Corner-filleted flexure hinges[J].Journal of Mechanical Design,2001,123(3):346-352.
CHEN G,LIU X,DU Y.Elliptical-arc-fillet flexure hinges:toward a generalized model for commonly used flexure hinges[J].Journal of Mechanical Design,2011,133(8):081002.
倪迎雪,伞晓刚,高世杰,等.新型混合柔性铰链柔度研究[J].红外与激光工程,2016,45(10):226-231.
NI Yingxue,SAN Xiaogang,GAO Shijie,et al.Reasearch on flexibility of the novel hybrid flexure hinge[J].Infrared and Laser Engineering,2016,45(10):226-231.
陈贵敏,贾建援,刘小院,等.直圆椭圆复合型柔性铰链研究[J].机械设计与研究,2005(4):37-39.
CHEN Guimin,JIA Jianyuan,LIU Xiaoyuan,et al.Research on right-circular elliptical flexure hinge[J].Machine Design and Research,2005(4):37-39.
张伟,杨立保,李清雅,等.直圆抛物线复合铰链柔度研究[J].红外与激光工程,2018,47(11):258-264.
ZHANG Wei,YANG Libao,LI Qingya,et al.Reasearch on compliance of compound circular-parabolic hinges.Infrared and Laser Engineering,2018,47(11):258-264.
CHEN G,WANG J,LIU X.Generalized equations for estimating stress concentration factors of various notch flexure hinges[J].Journal of Mechanical Design,2014,136(3):1-8.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构