1.新疆大学 电气工程学院, 新疆 乌鲁木齐 830047
2.石家庄海山实业发展总公司, 河北 石家庄 050000
3.国网河北省电力有限公司, 河北 石家庄 050000
邢蓉(1993— ),女,安徽无为人,在读硕士研究生,主要研究方向为电力设备的故障诊断。
扫 描 看 全 文
邢蓉,高丙朋,侯培浩等.基于MSCNN与STFT的滚动轴承故障诊断研究[J].机械传动,2020,44(07):41-45.
Xing Rong,Gao Bingpeng,Hou Peihao,et al.Research of Fault Diagnosis of Rolling Bearing based on MSCNN and STFT[J].Journal of Mechanical Transmission,2020,44(07):41-45.
邢蓉,高丙朋,侯培浩等.基于MSCNN与STFT的滚动轴承故障诊断研究[J].机械传动,2020,44(07):41-45. DOI: 10.16578/j.issn.1004.2539.2020.07.007.
Xing Rong,Gao Bingpeng,Hou Peihao,et al.Research of Fault Diagnosis of Rolling Bearing based on MSCNN and STFT[J].Journal of Mechanical Transmission,2020,44(07):41-45. DOI: 10.16578/j.issn.1004.2539.2020.07.007.
针对现有基于CNN(Convolution Neural Network)的滚动轴承故障诊断方法难以有效挖掘和利用数据中包含的多尺度信息问题,提出了一种多尺度卷积特征融合的滚动轴承故障诊断方法。加入上采样层,通过递归方式建立具有多尺度特征提取和融合能力的卷积神经网络MSCNN(Multi-Scale Convolution Neural Network)结构,提升模型对输入信号的理解能力。利用美国凯斯西储大学(CWRU)数据库对所提方法的有效性进行验证,采用短时傅里叶变换对滚动轴承信号进行频谱分析,将频谱样本输入到MSCNN网络中,数据分析表明,该方法能有效地提升故障的诊断精度。
In view of the existing CNN(Convolution Neural Network) based rolling bearing fault diagnosis method,it is difficult to effectively excavate and utilize the multi-scale information contained in the data,a multi-scale convolution feature fusion method for rolling bearing fault diagnosis is proposed. A convolutional neural network (MSCNN) structure with multi-scale feature extraction and fusion ability is built by adding the upper sampling layer,which improves the understanding ability of the model to the input signal. CWRU database is used to verify the validity of the proposed method. The short-time Fourier transform is used to analyze the spectrum of rolling bearing signals. The spectrum samples are input into MSCNN network. The data analysis shows that the method can effectively improve the fault diagnosis accuracy.
故障诊断滚动轴承多尺度卷积神经网络短时傅里叶变换
Fault diagnosisRolling bearingMulti-scale convolutional neural networkShort-time Fourier transform
李恒,张氢,秦仙蓉,等.基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J].振动与冲击,2018,37(19):124-131.
LI Heng,ZHANG Qing,QIN Xianrong,et al.Bearing fault diagnosis method based on STFT and convolution neural network[J].Vibration and Shock,2018,37(19):124-131.
FENG J,LEI Y G,LIN J,et al.Deep neural networks:a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J].Mechanical Systems & Signal Processing,2016(72/73):303-315.
JANSSENS O,SLAVKOVIKJ V,VERVISCH B,et al.Convolutional neural network based fault detection for rotating machinery[J].Journal of Sound & Vibration,2016,377(1):331-345.
ZHANG W,LI C H,PENG G L,et al.A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load[J].Mechanical Systems and Signal Processing,2018,100(1):439-453.
LU C,WANG Z,ZHOU B.Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification[J].Advanced Engineering Informatics,2017,32(1):139-151.
郑近德,陈敏均,程军圣,等.多尺度模糊熵及其在滚动轴承故障诊断中的应用[J].振动工程学报,2014,27(1):145-151.
ZHENG Jinde,CHEN Minjun,CHENG Junsheng,et al.Multiscale fuzzy entropy and its application in rolling bearing fault diagnosis [J].Journal of Vibration Engineering,2014,27(1):145-151.
郝如江,卢文秀,褚福磊.滚动轴承故障信号的多尺度形态学分析[J].机械工程学报,2008,44(11):160-165.
HAO Rujiang,LU Wenxiu,CHU Fulei.Multiscale morphological analysis of rolling bearing fault signal[J].Journal of Mechanical Engineering,2008,44(11):160-165.
LIU R,MENG G,YANG B,et al.Dislocated time series convolutional neural architecture: an intelligent fault diagnosis approach for electric machine[J].IEEE Transactions on Industrial Informatics,2017,13(3):1310-1320.
陈仁祥,黄鑫,杨黎霞,等.基于卷积神经网络和离散小波变换的滚动轴承故障诊断[J].振动工程学报,2018,31(5):883-891.
CHEN Renxiang,HUANG Xin,YANG Lixia,et al.Fault diagnosis of rolling bearing based on convolution neural network and discrete wavelet transform[J].Journal of Vibration Engineering,2018,31(5):883-891.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构