1.上海电力大学 自动化工程学院, 上海 200090
郑小霞(1978— ),女,山东烟台人,博士,副教授,主要研究方向为风力发电机组状态监测与故障诊断。
钱轶群(1995— ),女,江苏镇江人,硕士研究生,主要研究方向为风电发电机组易损部件的劣化趋势研究。
扫 描 看 全 文
郑小霞,钱轶群,王帅等.改进灰狼优化模糊核聚类在风电齿轮箱故障诊断中的应用[J].机械传动,2020,44(06):142-148.
Zheng Xiaoxia Qian Yiqun Wang Shuai Zhao Kun.Application of Improved Grey Wolf Optimization KFCM Algorithm in Fault Diagnosis of Wind Turbine Gearbox[J].Journal of Mechanical Transmission,2020,44(06):142-148.
郑小霞,钱轶群,王帅等.改进灰狼优化模糊核聚类在风电齿轮箱故障诊断中的应用[J].机械传动,2020,44(06):142-148. DOI: 10.16578/j.issn.1004.2539.2020.06.024.
Zheng Xiaoxia Qian Yiqun Wang Shuai Zhao Kun.Application of Improved Grey Wolf Optimization KFCM Algorithm in Fault Diagnosis of Wind Turbine Gearbox[J].Journal of Mechanical Transmission,2020,44(06):142-148. DOI: 10.16578/j.issn.1004.2539.2020.06.024.
为准确地辨识已知、未知故障类别,提出一种基于模糊核聚类模型的风电齿轮箱故障诊断新方法。首先,将模型初始聚类中心和核参数作为优化变量,采用改进型灰狼优化算法寻优求解。改进型灰狼优化算法中引入莱维飞行策略和非线性收敛向量,能够提高算法的收敛速度与精度,从而获得最佳分类结果下的各聚类中心和核参数;然后,根据待测样本与各聚类中心之间的核空间样本相似度,先判断样本是否属于已知故障,再诊断故障类别;最后,通过模拟风电齿轮箱的故障实验验证了该方法的有效性。
In order to accurately identify the known and unknown fault types,a new fault diagnosis method for wind turbine gearbox based on the kernel fuzzy c-means clustering(KFCM)is proposed. The initially cluster centers and the kernel parameter of the KFCM model are taken as optimization variables,and an improved grey wolf optimization algorithm is used to find the optimal centers. The introduction of Levy flight strategy and non-linear coefficient vector in the improved grey wolf optimization algorithm can improve the convergence speed and accuracy of the algorithm, and the clustering centers and kernel parameters can be obtained under the optimal classification results. Then,according to the similarity between the new sample and the centers in the kernel space,firstly whether the sample belongs to a known fault type is determined, and then the fault type is diagnosed. Finally,the effectiveness of the proposed method is verified by experiments simulating different fault types of wind turbine gearbox.
灰狼优化算法 莱维飞行 模糊核聚类 风电齿轮箱 故障诊断
Grey wolf optimizationLevy flightKernel fuzzy clusteringWind turbine gearboxFault diagnosis
张安安,黄晋英,卫洁洁,等.基于EMD-SVD与PNN的行星齿轮箱故障诊断研究[J].机械传动,2018,42(12):160-165.
ZHANG An'an,HUANG Jinying,WEI Jiejie,et al.Research of fault diagnosis of planetary gearbox based on EMD-SVD and PNN[J].Journal of Mechanical Transmission,2018,42(12):160-165.
龙泉,刘永前,杨勇平.基于粒子群优化BP神经网络的风电机组齿轮箱故障诊断方法[J].太阳能学报,2012,33(1):120-125.
LONG Quan,LIU Yongqian,YANG Yongping.Fault diagnosis method of wind turbine gearbox based on BP neural network trained by particle swarm optimization algorithm[J].Acta Energiae Solaris Scinica,2012,33(1):120-125.
张鲁洋,秦波,尹恒,等.基于ELMD能量熵与AFSA-SVM的行星齿轮箱关键部件故障诊断研究[J].机械传动,2018,42(6):164-170.
ZHANG Luyang,QIN Bo,YIN Heng,et al.Fault diagnosis of planetary gearbox key component based ELMD energy entropy and AFSA-SVM[J].Journal of Mechanical Transmission,2018,42(6):164-170.
顾煜炯,贾子文,王瑞,等.基于改进的多元离群检测方法的风机齿轮箱早期故障诊断[J].中国机械工程,2016,27(14):1905-1910.
GU Yujiong,JIA Ziwen,WANG Rui,et al.Early fault diagnosis for wind turbine gearbox based on improved multivariate outlier detection[J].China Mechanical Engineering,2016,27(14):1905-1910.
LIN K P.A novel evolutionary kernel intuitionistic fuzzy c-means clustering algorithm[J].Fuzzy Systems IEEE Transactions on Fuzzy Systems,2014,22(5):1074-1087.
李状,柳亦兵,滕伟,等.基于粒子群优化KFCM的风电齿轮箱故障诊断[J].振动、测试与诊断,2017,37(3):484-488,626-627.
LI Zhuang,LIU Yibing,TENG Wei,et al.Fault diagnosis of wind turbine gearbox based on KFCM optimized by particle swarm optimization[J].Journal of Vibration,Measurement & Diagnosis,2017,37(3):484-488,626-627.
MIRJALILI S,MIRJALILI S M,LEWIS A.Grey wolf optimizer[J].Advances in Engineering Software,2014,69(3):46-61.
龙文,蔡绍洪,焦建军,等.一种改进的灰狼优化算法[J].电子学报,2019,47(1):169-175.
LONG Wen,CAI Shaogang,JIAO Jianjun,et al.An improved grey wolf optimization algorithm[J].Acta Elctronica Sinica,2019,47(1):169-175.
VISWANATHAN G M,AFANASYEV V,BULDYREV S V,et al.Levy flight search patterns of wandering albatrosses[J].Nature,1996,381(6581):413-415.
HAKL H,UGUZ H.A novel particle swarm optimization with levy flight[J].Applied Soft Computing,2014(23):333-345.
马卫,孙正兴.采用搜索趋化策略的布谷鸟全局优化算法[J].电子学报,2015,43(12):2429-2439.
MA Wei,SUN Zhengxing.A global cuckoo optimization algorithm using coarse-to-fine search[J].Acta Electronica Sinica,2015,43(12):2429-2439.
ALI A H,PARHAM P.An efficient modified grey wolf optimizer with levy flight for optimization tasks[J].Applied Soft Computing,2017(60):115-134.
朱海波,张勇.基于差分进化与优胜劣汰策略的灰狼优化算法[J].南京理工大学学报,2018,42(6):678-686.
ZHU Haibo,ZHANG Yong.Grey wolf optimization algorithm based on differential evolution and survival of fitness strategy[J].Journal of Nanjing University of Science and Technology,2018,42(6):678-686.
ROSARIO N M.Fast accurate algorithm for numerical simulation of levy stable stochastic processes[J].Physical Review E,1994,49:4677.
张新明,王霞,涂强,等.趋优算子和Levy Flight混合的粒子群优化算法[J].电子科技大学学报,2018,47(3):421-429.
ZHANG Xinming,WANG Xia,TU Qiang,et al.Particle swarm optimization algorithm based on combining global-best operator and levy flight[J].Journal of University of Electronic Science and Technology of China,2018,47(3):421-429.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构