1.北京建筑大学 机电与车辆工程学院,北京 100044
2.北京建筑大学 城市轨道交通服役性能保障北京市重点实验室,北京 100044
刘畅(1996— ),男,山东济南人,硕士研究生,研究方向为动态信号处理与特征提取。
王衍学(1980— ),男,山东济宁人,教授,博士生导师,研究方向为机械故障诊断。
扫 描 看 全 文
刘畅,王衍学,杨建伟.基于FOA的变分模态分解在轴承故障诊断中的应用[J].机械传动,2020,44(05):146-154.
Liu Chang,Wang Yanxue,Yang Jianwei.Application of Variational Mode Decomposition based on the FOA and in Bearing Fault Diagnosis[J].Journal of Mechanical Transmission,2020,44(05):146-154.
刘畅,王衍学,杨建伟.基于FOA的变分模态分解在轴承故障诊断中的应用[J].机械传动,2020,44(05):146-154. DOI: 10.16578/j.issn.1004.2539.2020.05.024.
Liu Chang,Wang Yanxue,Yang Jianwei.Application of Variational Mode Decomposition based on the FOA and in Bearing Fault Diagnosis[J].Journal of Mechanical Transmission,2020,44(05):146-154. DOI: 10.16578/j.issn.1004.2539.2020.05.024.
变分模态分解(VMD)广泛应用于故障诊断中,从振动信号中提取故障特征是故障诊断过程中的关键部分。针对强背景噪声和脉冲干扰下滚动轴承早期故障特征难以提取的问题,提出了一种新的基于果蝇优化算法(FOA)的变分模态分解的轴承故障诊断方法。首先,利用果蝇优化算法自适应优化VMD的惩罚参数,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=34084931&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=34084923&type=,2.20133328,2.62466669,和分解数,K,,获取最优参数组合;然后,对信号进行VMD分解,得到,K,个模态分量;最后,基于峭度最大化准则选取最优模态分量进行包络解调分析,提取出故障特征频率。通过仿真信号分析、实际故障轴承信号验证以及与基于果蝇优化算法的多分辨奇异值分解(MRSVD)方法进行对比,证明了所提方法的有效性。
Abstract The variational mode decomposition (VMD) is widely used in fault diagnosis. Extracting fault characteristics from vibration signals is a critical part in the bearing fault diagnosis. It is difficult to extract early fault signatures under strong background noise and pulse interference. Thus, a new fault diagnosis method is proposed based on the variational mode decomposition and fruit fly optimization algorithm (FOA). Firstly, the fruit fly optimization algorithm is used to optimize the penalty parameter α and the decomposition number K of the VMD adaptively to obtain the optimal parameter combination. Then, the VMD decomposition of the signal is performed to find K modal components. Finally, the optimal modal component is selected based on the kurtosis maximization criterion for envelope demodulation analysis and extracting the frequency of the fault feature. The effectiveness of the presented method is verified by simulation signal analysis, detecting bearing fault signal and comparing with multi-resolution singular value decomposition (MRSVD) approach based on fruit fly optimization algorithm.
变分模态分解 果蝇优化算法 多分辨奇异值分解 轴承 故障诊断
Variational mode decompositionFruit fly optimization algorithmMulti-resolution singular value decompositionBearingFault diagnosis
俞啸,范春旸,董飞,等.基于EMD与深度信念网络的滚动轴承故障特征分析与诊断方法[J].机械传动,2018,42(6):157-163.
YU Xiao,FAN Chunyang,DONG Fei,et al.Fault feature analysis and diagnosis method of rolling bearing based on empirical mode decomposition and deep belief network[J].Journal of Mechanical Transmission,2018,42(6):157-163.
徐乐,于如信,邢邦圣,等.基于LMD能量熵的滚动轴承故障特征提取[J].机械传动,2019,43(1):136-139.
XU Le,YU Ruxin,XING Bangsheng,et al.Fault feature extraction for rolling bearing based on LMD energy entropy[J].Journal of Mechanical Transmission,2019,43(1):136-139.
赵学智,叶邦彦,陈统坚.多分辨奇异值分解理论及其在信号处理和故障诊断中的应用[J].机械工程学报,2010,46(20):64-75.
ZHAO Xuezhi,YE Bangyan,CHEN Tongjian.Multiresolution singular value decomposition theory and its application in signal processing and fault diagnosis [J].Journal of Mechanical Engineering,2010,46(20):64-75.
孟宗,谷伟明,胡猛,等.基于改进奇异值分解和经验模式分解的滚动轴承早期微弱故障特征提取[J].计量学报,2016,37(4):406-410.
MENG Zong,GU Weiming,HU Meng,et al.Early weak fault feature extraction of rolling bearings based on improved singular value decomposition and empirical mode decomposition [J].Journal of Metrology,2016,37(4):406-410.
秦波,王祖达,郭慧莉,等.基于VMD和对称差分能量算子解调的滚动轴承故障诊断方法[J].机械传动,2017,41(5):143-147.
QIN Bo,WANG Zuda,GUO Huili,et al.Fault diagnosis of rolling bearings based on VMD and symmetric difference energy operator demodulation[J].Journal of Mechanical Transmission,2017,41(5):143-147.
吴文轩,王志坚,张纪平,等.基于峭度的VMD分解中k值的确定方法研究[J].机械传动,2018,42(8):153-157.
WU Wenxuan,WANG Zhijian,ZHANG Jiping,et al.Research of the method of determining k value in VMD based on kurtosis[J].Journal of Mechanical Transmission,2018,42(8):153-157.
张锁峰,王衍学,何水龙,等.基于VMD的调制谱强度分布在齿轮故障诊断中的应用研究[J].机械强度,2019,41(2):267-274.
ZHANG Suofeng,WANG Yanxue,HE Shuilong,et al.GEAR fault diagnosis based on the VMD and modalation spectrum intersity distribution[J].Journal of Mechanical Strength,2019,41(2):267-274.
WANG Yanxue,YANG Lin,XIANG Jiawei,et al.A hybrid approach to fault diagnosis of roller bearings under variable speed conditions[J].Measurement Science and Technology,2017,28(12):1-29.
WANG Yanxue,RICHARD Markert,XIANG Jiawei,et al.Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system[J].Mechanical Systems and Signal Processing 2015,60/61:243-251.
HU Chaofan,WANG Yanxue,YANG Jianwei,et al.Fault detection in a multistage gearbox based on a hybrid demodulation method using modulation intensity distribution and variational mode decomposition[J].Applied Sciences-Basel,2018,696(8):1-20.
崔伟成,李伟,孟凡磊,等.基于果蝇优化算法的自适应随机共振轴承故障信号检测方法[J].振动与冲击,2016,35(10):96-100.
CUI Weicheng,LI Wei,MENG Fanlei,et al.Adaptive stochastic resonance bearing fault signal detection method based on fruit fly optimization algorithm[J].Journal of Vibration and Shock,2016,35(10):96-100.
WANG Yanxue,RICHARD Markert.Filter bank property of variational mode decomposition and its applications[J].Signal Processing,2015,120:509-521.
蒋丽英,卢晓东,王景霖,等.基于PSO-VMD的齿轮特征参数提取方法研究[J].制造技术与机床,2017,30(11):65-71.
JIANG Liying,LU Xiaodong,WANG Jinglin,et al.Research on gear feature extraction method based on PSO-VMD[J].Journal of Manufacturing Technology and Machine Tool,2017,30(11):65-71.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构