1.中北大学 机械工程学院, 山西 太原 030051
赵晓涛(1992— ),男,山西平鲁人,硕士研究生,研究方向为故障诊断、机电一体化。
孙虎儿(1972— ),男,山西寿阳人,博士,副教授,研究方向为机械设备状态监测与故障诊断、摩擦科学与工程。
扫 描 看 全 文
赵晓涛,孙虎儿,姚巍.基于CYCBD和包络谱的滚动轴承微弱故障特征提取[J].机械传动,2020,44(04):165-169.
Zhao Xiaotao,Sun Huer,Yao Wei.Feature Extraction of Weak Fault for Rolling Bearing based on CYCBD and Envelope Spectrum[J].Journal of Mechanical Transmission,2020,44(04):165-169.
赵晓涛,孙虎儿,姚巍.基于CYCBD和包络谱的滚动轴承微弱故障特征提取[J].机械传动,2020,44(04):165-169. DOI: 10.16578/j.issn.1004.2539.2020.04.026.
Zhao Xiaotao,Sun Huer,Yao Wei.Feature Extraction of Weak Fault for Rolling Bearing based on CYCBD and Envelope Spectrum[J].Journal of Mechanical Transmission,2020,44(04):165-169. DOI: 10.16578/j.issn.1004.2539.2020.04.026.
针对在强噪声的干扰下,滚动轴承微弱故障特征难以有效地提取的问题,提出一种基于最大2阶循环平稳盲解卷积(Maximum Second-order Cyclostationarity Blind Deconvolution,CYCBD)和包络谱相结合的微弱故障特征提取方法。首先,由故障特征频率设置合理的循环频率集,使用CYCBD对含有强噪声的微弱故障冲击信号进行降噪处理,增强信号中的周期性冲击成分;然后,对降噪信号进行Hilbert包络谱分析来识别故障特征频率。通过仿真和实验,结果证明,该方法能有效地提取被强噪声淹没的微弱故障特征。
To solve the problem that it is difficult to extract the weak fault features of rolling bearing effectively under the interference of strong background noise,a method of extracting the weak fault features based on the combination of maximum second-order cyclostationary blind deconvolution (CYCBD) and envelope spectrum is proposed.Firstly,a reasonable cycle frequency set is set by the fault characteristic frequency,and CYCBD is used to reduce the noise of weak fault impulse signal with strong noise,so as to enhance the periodic impulse component in the signal.Then,the noise reduction signal is analyzed by Hilbert envelope spectrum to identify the fault characteristic frequency.The simulation and experimental results show that the method can effectively extract the weak fault features submerged by strong noise.
滚动轴承最大2阶循环平稳盲解卷积微弱故障特征提取
Rolling bearingMaximum second-order cyclostationarity blind deconvolutionWeak faultFeature extraction
李从志,郑近德,潘海洋,等.基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断方法[J].中国机械工程,2019,30(14):1713-1719.
LI Congzhi,ZHENG Jinde,PAN Haiyang,et al.Fault diagnosis method of rolling bearing based on fine composite multi-scale dispersion entropy and support vector machine[J].China Mechanical Engineering,2019,30(14):1713-1719.
MA H,FENG Z.Planet bearing fault diagnosis using multipoint optimal minimum entropy deconvolution adjusted[J].Journal of Sound and Vibration,2019(449):235-273.
武超,孙虎儿,梁晓华.基于MOMEDA和包络谱的齿轮微弱故障特征提取[J].机械传动,2018,42(3):164-168.
WU Chao,SUN Huer,LIANG Xiaohua. Feature extraction of gear weak fault based on momeda and envelope spectrum[J].Journal of Mechanical Transmission,2018,42(3): 164-168.
AGUS S,LIU C,KEIJI Y,et al.Application of hilbert–huang transform for vibration signal analysis in end-milling[J].Precision Engineering,2018(53):236-277.
WIGGINS R A.Minimum entropy deconvolution[J].Geoexploration,1978,16(1/2):21-35.
陈海周,王家序,汤宝平,等.基于最小熵解卷积和Teager能量算子直升机滚动轴承复合故障诊断研究[J].振动与冲击,2017,36(9):45-50.
CHEN Haizhou,WANG Jiaxu,TANG Baoping,et al. Research on composite fault diagnosis of helicopter rolling bearing based on minimum entropy deconvolution and Teager energy operator[J].Vibration and Shock,2017,36(9):45-50.
MCDONALD L G,ZHAO Q,ZUO M J.Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection[J].Mechanical Systems & Signal Processing,2012,33(1):237-255.
刘文朋,廖英英,杨绍普,等.一种基于多点峭度谱和最大相关峭度解卷积的滚动轴承故障诊断方法[J].振动与冲击,2019,38(2): 146-151.
LIU Wenpeng,LIAO Yingying,YANG Shaopu,et al.A rolling bearing fault diagnosis method based on multi point kurtosis spectrum and maximum correlation kurtosis deconvolution[J].Vibration and Shock,2019,38(2):146-151.
MCDONALD G L,ZHAO Q.Multipoint optimal minimum entropy deconvolution and convolution fix:application to vibration fault detection[J].Mechanical Systems and Signal Processing,2016,82(1):461-477.
王志坚,王俊元,赵志芳,等.基于MKurt-MOMEDA的齿轮箱复合故障特征提取[J].振动、测试与诊断,2017,37(4):830-834.
WANG Zhijian,WANG Junyuan,ZHAO Zhifang,et al.Feature extraction of gearbox composite fault based on mkurt momeda[J].Vibration,Test and Diagnosis,2017,37(4):830-834.
MARCO B,JEROME A,GIANLUCA D E.Blind deconvolution based on cyclostationarity maximization and its application to fault identification[J].Journal of Sound and Vibration,2018(432):569-601.
AMANI R,JEROME A,MENAD S.Indicators of cyclostationarity:theory and application to gear fault monitoring[J].Mechanical Systems and Signal Processing,2008,22(3):574-587.
Case Western Reserve University Bearing Data Center.Seeded fault test data.[EB/OL].http://csegroups.case.edu/bearingdatacenterhttp://csegroups.case.edu/bearingdatacenter.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构