1.中北大学 机械工程学院, 山西 太原 030051
2.先进制造技术山西省重点实验室, 山西 太原 030051
张宁(1994— ),男,山西长治人,在读硕士研究生,研究方向为机械故障诊断。
扫 描 看 全 文
张宁,魏秀业,徐晋宏.基于LMD样本熵与ELM的行星齿轮箱故障诊断[J].机械传动,2020,44(04):152-157.
Zhang Ning,Wei Xiuye,Xu Jinhong.Planetary Gearbox Fault Diagnosis based on LMD Sample Entropy and ELM[J].Journal of Mechanical Transmission,2020,44(04):152-157.
张宁,魏秀业,徐晋宏.基于LMD样本熵与ELM的行星齿轮箱故障诊断[J].机械传动,2020,44(04):152-157. DOI: 10.16578/j.issn.1004.2539.2020.04.024.
Zhang Ning,Wei Xiuye,Xu Jinhong.Planetary Gearbox Fault Diagnosis based on LMD Sample Entropy and ELM[J].Journal of Mechanical Transmission,2020,44(04):152-157. DOI: 10.16578/j.issn.1004.2539.2020.04.024.
为了解决行星齿轮箱故障特征提取困难的问题,考虑到行星齿轮箱振动信号的耦合、非线性的特点,提出基于局域均值分解(LMD)的样本熵和极限学习机(ELM)结合的行星齿轮箱故障诊断方法。首先,利用局域均值分解方法将振动信号自适应地分解为多个PF分量,结合相关系数选取包含主要故障信息的前4个PF分量。其次,应用样本熵方法进行计算,组成特征向量。最后,将特征向量输入极限学习机进行故障分类。在行星齿轮箱实验台上进行了实验,与基于概率神经网络(PNN)分类算法进行了对比,并与基于奇异值分解(SVD)构成的特征向量进行了对比,结果验证了该方法的有效性。
In order to solve the difficult problem of early fault feature extraction of planetary gearbox and consider that the planetary gearbox vibration signal is coupling and nonlinear,and the signal has multiple transmission paths,a planetary gearbox fault diagnosis method based on Local Mean Decomposition(LMD) and Sample Entropy and Extreme Learning Machine(ELM) is proposed.Firstly,the vibration signal is adaptively decomposed into a plurality of PF components by LMD,and the first four PF components including the main fault information are selected in combination with the correlation coefficient and the variance contribution rate.Secondly,the Sample Entropy of the signal is calculated to form a feature vector.Finally,the feature vector is input into ELM for fault classification.Experiments are carried out on the planetary gearbox test bench,compared with the probabilistic neural network classification algorithm,and compared with the feature vector based on Singular Value Decomposition (SVD).The results verify the effectiveness of the proposed method.
行星齿轮箱 局域均值分解 样本熵 极限学习机 故障诊断
Planetary gearboxLMDSample entropyELMFault diagnosis
LEI Y,JING L,ZUO M J,et al.Condition monitoring and fault diagnosis of planetary gearboxes:A review[J].Measurement,2014,48(1):292-305.
任学平,王朝阁,张玉皓,等.基于双树复小波包自适应Teager能量谱的滚动轴承早期故障诊断[J].振动与冲击,2017,36(10):84-92.
REN Xueping,WANG Chaoge,ZHANG Yuhao,et al.Incipient fault diagnosis of rolling bearings based on dual-tree complex wavelet packet transform adaptive teager energy spectrum[J].Journal of Vibration and Shock,2017,36(10):84-92.
LU S,WANG J,XUE Y.Study on multi-fractal fault diagnosis based on EMD fusion in hydraulic engineering[J].Applied Thermal Engineering,2016,103:798-806.
SMITH J S.The local mean decomposition and its application to EEG perception data[J].Journal of the Royal Society Interface,2005,2(5):443-454.
RICHMAN J S ,MOORMAN J R .Physiological time-series analysis,using approximate entropy and sample entropy[J].American Journal of Physiology-Heart and Circulatory Physiology(Print),2000,278(6):H2039-H2049.
HUANG G B,ZHU Q Y,SIEW C K.Extreme learning machine:Theory and applications[J].Neurocomputing,2006,70(1/2/3):489-501.
刘乐,孙虎儿,谢志谦.基于SVD-LMD模糊熵与PNN的滚动轴承故障诊断[J].机械传动,2017,41(3):172-176.
LIU Le,SUN Huer,XIE Zhiqian.Fault diagnosis of bearing based on SVD-LMD fuzzy entropy and PNN[J].Journal of Mechanical Transmission,2017,41(3):172-176.
赵志宏,杨绍普.一种基于样本熵的轴承故障诊断方法[J].振动与冲击,2012,31(6):136-140.
ZHAO Zhihong,YANG Shaopu.Sample entropy-based roller bearing fault diagnosis method[J].Journal of Vibration and Shock,2012,31(6):136-140.
骈聪.基于机器学习算法的非编码RNA识别[D].南京:南京农业大学2016:17-20.
PIAN Cong.The indentification of non-coding RNA based on machine learning algorithm[D].Nanjing:Nanjing Agricultural University,2016:17-20.
张安安,黄晋英,卫洁洁,等.基于EMD-SVD与PNN的行星齿轮箱故障诊断研究[J].机械传动,2018,42(12):160-165.
ZHANG An'an,HUANG Jinying,WEI Jiejie,et al.Research of fault diagnosis of planetary gearbox based on EMD-SVD and PNN[J].Journal of Mechanical Transmission,2018,42(12):160-165.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构