1.河北工业大学 机械工程学院, 天津 300132
丁承君(1973— ),男,河北邯郸人,博士,教授,博士生导师,主要研究领域为移动机器人智能控制、智能故障诊断、嵌入式计算机系统。
付晓阳(1993— ),男,河北衡水人,硕士研究生,研究方向为智能故障诊断系统研究。
扫 描 看 全 文
丁承君,付晓阳,冯玉伯等.基于参数优化VMD的齿轮箱故障特征提取方法[J].机械传动,2020,44(03):171-176.
Ding Chengjun Fu Xiaoyang Feng Yubo Zhang Liang.Fault Feature Extraction Method of Gearbox based on Parameter Optimization VMD[J].Journal of Mechanical Transmission,2020,44(03):171-176.
丁承君,付晓阳,冯玉伯等.基于参数优化VMD的齿轮箱故障特征提取方法[J].机械传动,2020,44(03):171-176. DOI: 10.16578/j.issn.1004.2539.2020.03.028.
Ding Chengjun Fu Xiaoyang Feng Yubo Zhang Liang.Fault Feature Extraction Method of Gearbox based on Parameter Optimization VMD[J].Journal of Mechanical Transmission,2020,44(03):171-176. DOI: 10.16578/j.issn.1004.2539.2020.03.028.
为解决齿轮箱故障振动信号信噪比低、故障特征提取难的问题,提出了基于参数优化变分模态分解(VMD)的齿轮箱故障特征提取方法。首先,以分解结果的局部极小包络熵最小为目标,利用果蝇算法搜寻VMD分解参数,K,和,α,的最优组合;将原始信号分解成若干IMF分量,从中选择包络熵较小的分量进行信号重构,并对重构信号进行包络解调运算,从重构信号的包络谱中提取故障频率特征。结果表明,利用此方法对实测信号进行处理,成功降噪、提取齿轮箱故障特征,并且比利用经验模态分解方法降噪效果更好,提取的故障特征更加明显。
In order to solve the problem that the signal-to-noise ratio of the gearbox fault signal is low and fault feature extraction is difficult,a method for extracting gearbox fault feature based on parameters optimized variational mode decomposition is proposed. Firstly,the drosophila optimization algorithm is used to search for the most optimal combination of the variational mode decomposition's ,K, and ,α,,aiming at the minimum local entropy of the decomposition result. The original signal is decomposed into several IMF components,from which the component with the smaller envelope entropy is selected for signal reconstruction,and the reconstructed signal is demodulated to extract the fault frequency feature from the envelope spectrum of the reconstructed signal. The results show that this method can reduce the noise and extract the fault features of gearbox successfully,and the effect of noise reduction is better than the empirical mode decomposition method,and the extracted fault features are more obvious.
变分模态分解 参数优化 果蝇优化算法 齿轮箱 故障特征提取
Variational mode decompositionParameter optimizationDrosophila optimization algorithmGearboxFault feature extraction
吴健,柯镇兴,李宁,等.基于小波变换的变转速齿轮箱故障辨识[J].煤矿机械,2018,39(9):149-151.
WU Jian,KE Zhenxing,LI Ning,et al.Fault identification of variable speed gearbox based on wavelet transform[J].Coal Mine Mchinery,2018,39(9):149-151.
张安安,黄晋英,卫洁洁,等.基于EMD-SVD与PNN的行星齿轮箱故障诊断研究[J].机械传动,2018,42(12):160-165.
ZHANG An'an,HUANG Jinying,WEI Jiejie,et al.Research of fault diagnosis of planetary gearbox based on EMD-SVD and PNN[J].Journal of Mechanical Transmission,2018,42(12):160-165.
程军圣,罗颂荣,杨斌,等.LMD能量矩和变量预测模型模式识别在轴承故障智能诊断中的应用[J].振动工程学报,2013,26(5):751-757.
CHENG Junsheng,LUO Songrong,YNAG Bin,et al.LMD energy moment and variable predictive model based class discriminate and their application in intelligent fault diagnosis of roller bearing[J].Journal of Vibration Engineering,2013,26(5):751-757.
DRAGOMIRETSKIY K,ZOSSO D.Variational mode decomposition[J].IEEE Transactions on Signal Processing,2014,62(3):531-544.
艾澍海,张寿明.基于VMD和形态差值滤波器的特征提取算法[J].传感器与微系统,2018,37(9):151-154.
AI Shuhai,ZHANG Shouming.Feature extraction algorithm based on VMD and morphological difference filter[J].Transducer and Microsystem Technologies,2018,37(9):151-154.
李昌喜.基于变分模态分解的高速列车转向架故障诊断[D].成都:西南交通大学,2018:25-38.
LI Changxi.Fault diagnosis of high-speed train bogie based on variational mode decomposition[D].Chengdu:Southwest Jiaotong University,2018:25-38.
杨斌,张家玮,王建国,等.基于MED-RSSD的滚动轴承早期故障特征提取[J].机械传动,2018,42(6):120-124.
YANG Bin,ZHANG Jiawei,WANG Jianguo,et al.Extraction of the early fault feature of rolling bearing based on MED-RSSD[J].Journal of Mechanical Transmission,2018,42(6):120-124.
RASHMIREKHA R,MIHIRM N M.Comparative analysis of EMD and VMD algorithm in speech enhancement[J].International Journal of Natural Computing Research,2017,6(1):17-35.
PAN W C.A new fruit fly optimization algorithm:taking the financial distress model as an example[J].Knowledge-based Systems,2012,26:69-74.
唐贵基,王晓龙.参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J].西安交通大学学报,2015,49(5):73-81.
TANG Guiji,WANG Xiaolong.Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J].Journal of Xi'an Jiaotong University,2015,49(5):73-81.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构