1.陆军工程大学 石家庄校区, 河北 石家庄 050003
迭旭鹏(1994— ),男,四川阆中人,硕士研究生,研究方向为传动机械的故障特征提取。
扫 描 看 全 文
迭旭鹏,康建设,池阔.基于变分模态分解与快速谱峭图的齿轮箱滚动轴承故障特征提取[J].机械传动,2020,44(01):143-149.
Kuo Die Xupeng Kang Jianshe Chi.Fault Feature Extraction of Gearbox Rolling Bearing based on VMD and Fast-kurtogram[J].Journal of Mechanical Transmission,2020,44(01):143-149.
迭旭鹏,康建设,池阔.基于变分模态分解与快速谱峭图的齿轮箱滚动轴承故障特征提取[J].机械传动,2020,44(01):143-149. DOI: 10.16578/j.issn.1004.2539.2020.01.024.
Kuo Die Xupeng Kang Jianshe Chi.Fault Feature Extraction of Gearbox Rolling Bearing based on VMD and Fast-kurtogram[J].Journal of Mechanical Transmission,2020,44(01):143-149. DOI: 10.16578/j.issn.1004.2539.2020.01.024.
针对齿轮箱的滚动轴承故障信号因噪声干扰,难以进行有效提取的问题,提出了基于变分模态分解与快速谱峭图相结合的轴承故障特征提取方法。首先,利用变分模态分解(Variational Mode Decomposition,VMD)将振动信号分解成若干个本征模态分量(Intrinsic Mode Function,IMF),通过相关峭度计算选取故障信息最突出的分量信号;然后,利用快速谱峭图自适应地确定带通滤波;最后,对滤波后的信号进行平方包络谱分析,提取出故障信息。通过公开数据分析和齿轮箱轴承故障实验,证明了该方法的有效性和可行性。
The rolling bearing fault signal of the gearbox is difficult to extract effectively due to noise interference. A fault feature extraction method of gearbox rolling bearing based on VMD and fast-kurtogram is proposed. Firstly, the vibration signal of bearing is decomposed into several Intrinsic Mode Function (IMF) components by VMD, and the component signal with the most prominent fault information is selected by the correlated kurtosis, and then the bandpass filtering is adaptively determined by the fast-kurtogram. Finally, the filtered signal is subjected to squared envelope spectrum analysis to extract fault information. The effectiveness and feasibility of the proposed method are demonstrated by public bearing fault data analysis and gearbox bearing fault experiments.
变分模态分解 相关峭度 快速谱峭图 特征提取
VMDCorrelated kurtosisFast-kurtogramFeature extraction
任学平,李攀,王朝阁,等.基于改进VMD与包络导数能量算子的滚动轴承早期故障诊断[J].振动与冲击,2018,37(15):6-13.
REN Xueping,LI Pan,WANG Chaoge,et al.Rolling bearing early fault diagnosis based on improved VMD and envelope derivative operator[J].Journal of Vibration and Shock,2018,37(15):6-13.
HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis[J].Proceedings of the Royal Society,1998(454):903-995.
DRAGOMIRETSKIY K,ZOSSO D.Variational mode decomposition[J].IEEE Transactions on Signal Processing,2014,62(3):531-544.
柴慧理,叶美桃,王志坚.基于提高变分模态分解的齿轮箱复合故障特征提取[J].机械传动,2018,42(7):151-156.
CHAI Huili,YE Meitao,WANG Zhijian.Compound fault feature extraction of gearbox based on Improve variational mode decomposition[J].Journal of Mechanical Transmission,2018,42(7):151-156.
刘尚坤,唐贵基,王晓龙.基于改进变分模态分解的旋转机械故障时频分析方法[J].振动工程学报,2016,29(6):1119-1126.
LIU Shangkun,TANG Guiji,WANG Xiaolong.Time frequency analysis method for rotary mechanical fault based on improved variational mode decomposition[J].Journal of Vibration Engineering,2016,29(6):1119-1126.
马增强,李亚超,刘政,等.基于变分模态分解和Teager能量算子的滚动轴承故障特征提取[J].振动与冲击,2016,35(13):134-139.
MA Zengqiang,LI Yachao,LIU Zheng,et al.Rolling bearings' fault feature extraction based on variational mode decomposition and Teager energy operator[J].Journal of Vibration and Shock,2016,35(13):134-139.
李华,伍星,刘韬,等.基于信息熵优化变分模态分解的滚动轴承故障特征提取[J].振动与冲击,2018,37(23):219-225.
LI Hua,WU Xing,LIU Tao,et al.Bearing fault extraction based on VMD optimized with information entropy[J].Journal of Vibration and Shock,2018,37(23):219-225.
刘长良,武英杰,甄成刚.基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J].中国电机工程学报,2015,35(13):3358-3365.
LIU Changliang,WU Yingjie,ZHEN Chengang.Rolling bearing fault diagnosis based on variational mode decomposition and fuzzy c mean clustering[J].Proceedings of the CSEE,2015,35(13):3358-3365.
刘文朋,刘永强,杨绍普,等.基于典型谱相关峭度图的滚动轴承故障诊断方法[J].振动与冲击,2018,37(8):87-92.
LIU Wenpeng,LIU Yongqiang,YANG Shaopu,et al.Fault diagnosis of rolling bearing based on typical correlated kurtogram[J].Journal of Vibration and Shock,2018,37(8):87-92.
ANTONI J.Fast computation of the kurtogram for the detection of transient faults[J].Mechanical Systems and Signal Processing,2007,21(1):108-124.
唐贵基,王晓龙.自适应最大相关峭度解卷积方法及其在轴承早期故障诊断中的应用[J].中国电机工程学报,2015,35(6):1436-1444.
TANG Guiji,WANG Xiaolong.Adaptive maximum correlated kurtosis deconvolution method and its application on incipient fault diagnosis of bearings[J].Proceedings of the CSEE,2015,35(6):1436-1444.
MCDONALD L,ZHAO Q,ZUO J.Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection[J].Mechanical Systems and Signal Processing,2012,33:237-255.
ZHANG X H,KANG J S,XIAO L,et al.A new improved kurtogram and its application to bearing fault diagnosis[J].Shock and Vibration,2015:1-22.
张永祥,王孝霖,张帅,等.基于奇异值分解和相关峭度的滚动轴承故障诊断方法研究[J].振动与冲击,2014,33(11):167-171.
ZHANG Yongxiang,WANG Xiaolin,ZHANG Shuai,et al.Rolling element bearing fault diagnosis based on singular value decomposition and correlated kurtosis[J].Journal of Vibration and Shock,2014,33(11): 167-171.
ZHANG X H,KANG J S,BAJRIC´ET R,et al.Gearbox fault diagnosis based on fast empirical mode decomposition and correlated kurtosis[C].Engineering Asset Management,2016:351-362.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构