1.重庆电子工程职业学院 智能制造与汽车学院, 重庆 401331
2.重庆理工大学 汽车零部件先进制造技术教育部重点实验室, 重庆 400054
3.重庆青山工业有限责任公司 技术中心, 重庆 402761
丁伟(1980— ),男,四川渠县人,副教授,主要研究方向为汽车故障诊断技术。
扫 描 看 全 文
丁伟,张志刚,姚练红等.基于形态小波与排列熵的变速器齿轮故障识别方法[J].机械传动,XXXX,XX(XX):165-168.
Ding Wei,Zhang Zhigang,Yao Lianhong,et al.Fault Recognition Method of Transmission Gear based on Morphological Wavelet and Permutation Entropy[J].Journal of Mechanical Transmission,XXXX,XX(XX):165-168.
丁伟,张志刚,姚练红等.基于形态小波与排列熵的变速器齿轮故障识别方法[J].机械传动,XXXX,XX(XX):165-168. DOI: 10.16578/j.issn.1004.2539.2019.10.030.
Ding Wei,Zhang Zhigang,Yao Lianhong,et al.Fault Recognition Method of Transmission Gear based on Morphological Wavelet and Permutation Entropy[J].Journal of Mechanical Transmission,XXXX,XX(XX):165-168. DOI: 10.16578/j.issn.1004.2539.2019.10.030.
在深入研究形态小波与排列熵的基础上,提出一种新的变速器齿轮故障识别方法。引入形态小波的概念,提出采用形态Haar小波对实测变速器齿轮振动信号进行降噪预处理;将排列熵作为变速器齿轮故障的特征值,提取了包括齿轮正常、齿面轻度磨损、齿面中度磨损和断齿等4种工况的振动信号;依据不同的故障对应不同的排列熵分布,对各种故障状态进行分类,同时对比了未降噪信号的排列熵分布。变速器齿轮故障识别的实例验证了形态小波与排列熵结合能有效提高齿轮故障分类能力。
Based on the in-depth study on morphological wavelet with permutation entropy,a new method for gear of transmission fault recognition is proposed. Firstly,the definition of morphological wavelet is introduced,and the morphological Haar wavelet is used to pre-process the measured gear of transmission vibration signal. Then,the permutation entropy is used as the eigenvalue of gear fault to extract the vibration signal, which included four working conditions: normal,slight-worn, medium-worn and broken teeth. Finally,according to different faults corresponding to different permutation entropy distributions,the various fault states are classified,and the permutation entropy distributions of non-denoised signals are compared. The example of gear fault recognition proved that the combination of morphological wavelet and permutation entropy could effectively improve the ability of gear of transmission fault classification.
变速器 齿轮 形态小波 排列熵 故障识别
TransmissionGearMorphological waveletPermutation entropyFault recognition
王细洋,孔志高,董海,等.基于自回归模型的齿轮轴破损诊断[J].机械工程学报,2009,45(4):265-272.
彭富强,于德介,武春燕.基于多尺度线调频基稀疏信号分解中的包络解调方法及其在齿轮故障诊断中的应用[J].机械工程学报,2010,46(12):1-7.
李兵,张培林,任国全,等.运用EMD和GA-SVM的齿轮故障特征提取与选择[J].振动、测试与诊断,2009,29(4):445-448.
刘涛,马转霞,杜楠.多尺度排列熵在涡旋压缩机故障诊断中的应用[J].兰州理工大学学报,2018,44(1):42-46.
刘骊,贾嵘,李涛涛,等.基于多尺度排列熵和支持向量机的风力发电机组齿轮箱振动故障诊断[J].电网与清洁能源,2017,33(5):87-91.
王余奎,李洪儒,叶鹏.基于多尺度排列熵的液压泵故障识别[J].中国机械工程,2015,26(4):518-523.
郑近德,程军圣,杨宇.多尺度排列熵及其在滚动轴承故障诊断中的应用[J]. 中国机械工程,2013,24(19):2641-2646.
GOUTSIAS J,HEIJMANS H J A M.Nonlinear multiresolution signal decomposition schemes-Part I:morphological pyramids[J].IEEE Transaction on Image Processing,2000,9(11):1862-1876.
HEIJMANS H J A M,GOUTSIAS J.Nonlinear multiresolution signal decomposition schemes-part II:Morphological wavelets[J]. IEEE Transaction on Image Processing,2000,9(11):1897-1913.
张文斌,周晓军,沈璐,等.基于形态小波的转子轴心轨迹提纯[J].浙江大学学报(工学版),2010,44(8):1449-1453.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构