1.西南交通大学 机械工程学院, 四川 成都 610031
曹书磊(1990— ),男,河南新乡人,硕士研究生,主要研究方向为机构学、非线性系统动力学及混沌控制。
扫 描 看 全 文
曹书磊,谢进,丁维高.永磁同步电机–2R机构多非线性耦合系统动力学分析及混沌控制[J].机械传动,XXXX,XX(XX):113-117.
Cao Shulei Xie Jin Ding Weigao.Dynamics Analysis and Chaos Control of Multi-nonlinear Coupling System for PMSM-2R Mechanism[J].Journal of Mechanical Transmission,XXXX,XX(XX):113-117.
曹书磊,谢进,丁维高.永磁同步电机–2R机构多非线性耦合系统动力学分析及混沌控制[J].机械传动,XXXX,XX(XX):113-117. DOI: 10.16578/j.issn.1004.2539.2019.10.021.
Cao Shulei Xie Jin Ding Weigao.Dynamics Analysis and Chaos Control of Multi-nonlinear Coupling System for PMSM-2R Mechanism[J].Journal of Mechanical Transmission,XXXX,XX(XX):113-117. DOI: 10.16578/j.issn.1004.2539.2019.10.021.
以研究多能域耦合系统的现代建模方法之一——键合图为基础,建立了永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)-2R机构多非线性耦合系统数学模型,并采用龙格-库塔法对其进行求解。在该耦合系统中,通过双参数混沌边缘法、分叉图以及最大李雅普诺夫指数,分析了多非线性系统之间的耦合作用对系统动力学特性的影响。当各子系统均处于混沌运动状态时,用通过主动控制方法调整耦合强度对其混沌运动进行了控制。研究发现,当耦合子系统都处于混沌运动状态时,由于子系统之间的耦合作用,系统动力学特性也随着耦合作用强度的改变而改变,耦合强度增大,系统混沌吸引子消失,逐渐从混沌运动状态变成周期运动状态。
Based on bond graph, a modern modeling method for multi-energy domain coupling system, a mathematical model of multi-nonlinear coupling system of PMSM-2R mechanism is established and solved by Runge-Kutta method. In the coupled system, the effects of the coupling between multi-nonlinear systems on the dynamic characteristics of the system are analyzed by the two-parameter chaotic edge method, bifurcation diagram and the maximum Lyapunov exponent. When each subsystem is in the state of chaotic motion, he active control method is used to control the chaotic motion by adjusting the coupling strength. It is found that when the coupled subsystems are in chaotic motion state, the dynamic characteristics of the system change with the change of coupling strength, and the chaotic attractor disappears with the increase of coupling strength, gradually changing from chaotic motion state to periodic motion state.
永磁同步电机-2R机构 键合图 多非线性 耦合强度 混沌控制
PMSM-2R mechanismBond graphMulti-nonlinearCoupling strengthChaos control
LI Z,JIN B P,JOO Y H,et al.Bifurcations and chaos in a permanent-magnet synchronous motor[J]. Circuits & Systems I Fundamental Theory & Applications IEEE Transactions on,2002,49(3):383-387.
任海鹏,刘丁,李洁.永磁同步电动机中混沌运动的延迟反馈控制[J]. 中国电机工程学报,2003,23(6):175-178.
WANG J,CHEN X,FU J.Adaptive finite-time control of chaos in permanent magnet synchronous motor with uncertain parameters[J]. Nonlinear Dynamics,2014,78(2):1321-1328.
崔清雨,谢进,魏巍,等.一种旋转机械的混沌运动及其控制[J]. 机械传动,2016,40(3):12-16.
何江波,谢进,陈永,等.欠驱动平面五杆机构混沌运动的控制与反控制[J].机械科学与技术,2013,32(1):1-5.
BAR-ELI K.On the stability of coupled chemical oscillators[J]. Physica D Nonlinear Phenomena,1985,14(2):242-252.
于津江,曹鹤飞,许海波,等.复合混沌系统的非线性动力学行为分析[J].物理学报,2006,55(1):29-34.
HUDDY S R,SKUFCA J D.Amplitude death solutions for stabilization of DC microgrids with instantaneous constant-power loads[J].IEEE Transactions on Power Electronics,2013,28(1):247-253.
WEI Y M,PENG Z K,DONG X J.Amplitude Death Induced by Mechanical Coupling[C]//Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,August6-9,2017,Cleveland,Ohio,USA.New York:ASME,2017:DOI:10.1115/DETC2017-67499:1-5.
KAMOPP D C,MARGOLIS D L,ROSENBERG R C.System Dynamics:Modeling and Simulation of Mechatronic Systems[M].New Jersey:John Wiley and sons Inc.,2000:2-4.
易仲庆,谢进,张建奇.平面开链机械臂动力系统及其控制的向量键合图建模与分析[J].机械设计与制造,2017(3):60-63.
王中双,赵国舜,吴建华,等.基于键合图的含移动铰机电耦合系统动力学建模与仿真[J].机械传动,2012,36(2):37-41.
禹思敏.混沌系统与混沌电路——原理、设计及其在通信中的应用[M].西安:西安电子科技大学出版社,2011:166-232.
谢立,张云华,俞蒙槐.一类非线性动态系统的混沌运动同步[C].1998年中国智能自动化学术会议论文集(下册).北京:中国自动化学会智能自动化专业委员会,1998:278-283.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构