1.桂林电子科技大学 机电工程学院, 广西 桂林 541004
2.北京建筑大学 城市轨道交通车辆服役性能保障北京市重点实验室, 北京 100044
刘放(1993― ),男,湖北仙桃人,硕士研究生,研究方向为信息融合故障诊断。
王衍学(1980― ),男,山东济宁人,教授,博士生导师,研究方向为机械系统动态信号处理与特征提取、装备故障诊断与智能维护。
扫 描 看 全 文
刘放,王衍学.基于多域特征与改进D-S证据理论的齿轮故障智能诊断方法[J].机械传动,2019,43(09):159-165.
Liu Fang,Wang Yanxue.Gear Fault Diagnosis Method based on Multi-domain Feature and Improved D-S Evidence Theory[J].Journal of Mechanical Transmission,2019,43(09):159-165.
刘放,王衍学.基于多域特征与改进D-S证据理论的齿轮故障智能诊断方法[J].机械传动,2019,43(09):159-165. DOI: 10.16578/j.issn.1004.2539.2019.09.028.
Liu Fang,Wang Yanxue.Gear Fault Diagnosis Method based on Multi-domain Feature and Improved D-S Evidence Theory[J].Journal of Mechanical Transmission,2019,43(09):159-165. DOI: 10.16578/j.issn.1004.2539.2019.09.028.
为了能全面准确识别齿轮的故障类别,建立了基于时域、频域以及能量等多域特征参数的特征空间模型。在此基础上,提出了一种基于多域特征与改进D-S证据理论的齿轮故障智能诊断方法。通过实验台实测数据提取相关特征参数作为诊断样本,以粒子群优化支持向量机的初步诊断结果构建多个证据体。实验结果验证了改进D-S证据理论融合证据体诊断结果的有效性。
In order to fully and accurately identify the fault category of gear,a feature space model based on multi-domain characteristic parameters such as time domain,frequency domain and energy is established. On this basis, an intelligent fault diagnosis method based on multi-domain feature and improved D-S evidence theory is proposed. Relevant feature parameters are extracted from the measured data as the diagnostic samples,and multiple evidences are constructed with the preliminary diagnosis results of particle swarm optimization support vector machine(PSO-SVM). The experimental results verify the effectiveness of the final diagnosis results obtained by the improved D-S evidence theory in this work.
齿轮故障诊断粒子群优化支持向量机加权D-S证据理论信息融合
Gear fault diagnosisPSO-SVMWeighted D-S evidence theoryInformation fusion
WANG Y X,XIANG J W.MARKERT R,et al.Spectral kurtosis for fault detection,diagnosis and prognostics of rotating machines:a review with applications[J].Mechanical Systems and Signal Processing,2016,66/67:679-698.
WEI Z X,WANG Y X.A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection[J].Knowledge-Based Systems,2017,116(C):1-12.
张鲁洋,秦波,尹恒,等.基于ELMD能量熵与AFSA-SVM的行星齿轮箱关键部件故障诊断研究[J].机械传动,2018,42(6):164-170.
杨琳,王衍学,何水龙.基于变分模态分解和广义Warblet变换的齿轮故障诊断[J].机械传动,2018,42(7):157-161.
DEMPSTER A P.The Dempster-Shafer calculus for statisticians[J].International Journal of Approximate Reasoning,2008,48(2):365-377.
WEN C L,WANG Y C,XU X B.Fuzzy information fusion algorithm of fault diagnosis based on similarity measure of evidence[C].International Symposium on Neural Networks: Advances in Neural Networks.Berlin:Springer-Verlag,2008:506-515.
DENG Y.Deng entropy[J].Chaos Solitons & Fractals,2016,91:549-553.
NING X,YUAN J,YUE X A.Ramirez-serrano,induced generalized choquet aggregating operators with linguistic information and their application to multiple attribute decision making based on the intelligent computing[J].Journal of Intelligent & Fuzzy Systems,2014,27:1077-1085.
CHEN S M,LIN T E,LEE L W.Group decision making using incomplete fuzzy preference elations based on the additive consistency and the order consistency[J].Information Science,2014,259:1-15.
LEI Y,HE Z,ZI Y.Application of the EEMD method to rotor fault diagnosis of rotating machinery[J].Mechanical Systems & Signal Processing,2009,23(4):1327-1338.
LEI Y,LIN J,HE Z,et al.Application of an improved kurtogram method for fault diagnosis of rolling element bearings[J].Mechanical Systems & Signal Processing,2011,25(5):1738-1749.
秦波,杨云中,陈敏,等.基于两类特征和最小二乘支持向量机的齿轮故障诊断方法[J].机械传动,2016,40(6):126-131.
DENG Y,SHI W,ZHU Z,et al.Combining belief function based on distance of evidence[J].Decision Support Systems,2004,38:489-493.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构