1.中北大学 机械工程学院, 山西 太原 030051
梁海英(1993― ),女,河北张家口人,在读硕士研究生,主要研究方向为复杂机电系统监测与故障诊断。
扫 描 看 全 文
梁海英,许昕,潘宏侠等.基于MRSVD能量特征和KFCM的齿轮箱复合故障诊断[J].机械传动,2019,43(09):128-132.
Liang Haiying,Xu Xin,Pan Hongxia,et al.Gearbox Composite Fault Diagnosis based on MRSVD Energy Characteristic and KFCM[J].Journal of Mechanical Transmission,2019,43(09):128-132.
梁海英,许昕,潘宏侠等.基于MRSVD能量特征和KFCM的齿轮箱复合故障诊断[J].机械传动,2019,43(09):128-132. DOI: 10.16578/j.issn.1004.2539.2019.09.022.
Liang Haiying,Xu Xin,Pan Hongxia,et al.Gearbox Composite Fault Diagnosis based on MRSVD Energy Characteristic and KFCM[J].Journal of Mechanical Transmission,2019,43(09):128-132. DOI: 10.16578/j.issn.1004.2539.2019.09.022.
针对齿轮箱复合故障信号成分复杂和故障特征难以识别的问题,提出基于多分辨奇异值分解(MRSVD)能量特征和模糊核聚类(KFCM)的齿轮箱复合故障诊断方法。首先,采集齿轮箱不同工况下的振动信号,通过进行MRSVD分解得到1个相似信号和5个细节信号;然后,提取6个分量信号的能量特征并进行归一化处理,得其能量相对值;最后,使用KFCM进行故障诊断。实验结果表明,MRSVD能量特征提取方法可有效提取齿轮箱复合故障特征,且KFCM可准确诊断齿轮箱复合故障。
A composite gearbox fault diagnosis method based on multi-resolution singular value decomposition (MRSVD) energy characteristic and fuzzy kernel clustering (KFCM) is proposed for the complex fault signal components of the gearbox and the difficulty in identifying fault characteristic. Firstly, the vibration signal of the gearbox under different working conditions is acquired to obtain a similar signal and five detail signals by performing MRSVD decomposition. Then, the energy characteristic of the six component signals are extracted and normalized to obtain the relative value of the energy. Finally, KFCM is used for fault diagnosis. The experimental results show that the MRSVD energy characteristic extraction method can effectively extract the composite fault characteristic of the gearbox, and KFCM can accurately diagnose the gearbox composite fault.
齿轮箱多分辨奇异值分解能量特征模糊核聚类故障诊断
GearboxMRSVDEnergy characteristicKFCMFault diagnosis
王志坚,寇彦飞,王俊元,等.基于最大相关峭度反褶积的齿轮箱复合故障特征提取[J].噪声与振动控制,2017,37(3):173-176.
PHILLIPS R D,WATSON L T,WYNNE R H,et al.Feature reduction using a singular value decomposition for the iterative guided spectral class rejection hybrid classifier[J].ISPRS Journal of Photogrammetry and Remote Sensing,2009,64(1):107-116.
赵学智,陈统坚,叶邦彦.基于奇异值分解的铣削力信号处理与铣床状态信息分离[J].机械工程学报,2007,43(6):169-174.
陶新民,徐晶,付强,等.基于样本密度KFCM新算法及其在故障诊断的应用[J].振动与冲击,2009,28(8):61-64.
唐燕雯.模糊核聚类在船舶故障诊断中的应用[J].舰船科学技术,2016,38(24):151-153.
ZHANG R ,RUDNICKY A I.A large scale clustering scheme for kernel K-means[C]// Object Recognition Aupported by User Interaction for Service Robots. 11-15 August,2002,Quebec,Canada. New York:IEEE,2002:289-292.
李明晓,刘增力.MRSVD-EMD方法在滚动轴承故障诊断中的应用[J].软件导刊,2018,17(5):138-141.
孟智慧,王昌.应用多分辨SVD和ICA的轴承复合故障诊断研究[J].现代制造工程,2014(8):127-130.
GOLAFSHAN R,SANLITURK K Y.SVD and Hankel matrix based de-noising approach for ball bearing fault detection and its assessment using artificial faults[J].Mechanical Systems & Signal Processing,2016,70/71:36-50.
赵学智,叶邦彦,林颖.奇异值分解对轴承振动信号中调幅特征信息的提取[J].北京理工大学学报,2011,31(5):572-577.
胥永刚,谢志聪,孟志鹏,等.基于奇异值分解的磁记忆信号特征提取方法[J].振动.测试与诊断,2014,34(6):1105-1109.
ZHANG D Q,CHEN S C.Clustering incomplete data using kernel-based fuzzy C-means algorithm[J].Neural Processing Letters,2003,18(3):155-162.
ZHANG Y,LIU X D,XIE F D,et al. Fault classifier of rotating machinery based on weighted support vector data description [J].Expert Systems with Applications,2009,36(4):7928-7932.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构