1.北京建筑大学 机电与车辆工程学院, 北京 100044
2.北京市建筑安全监测工程技术研究中心, 北京 100044
3.中国矿业大学 机电工程学院, 北京 100083
杜小磊(1993― ),男,河北保定人,硕士研究生,主要研究方向为信号处理、深度学习和故障诊断。
陈志刚(1979― ),男,湖北黄冈人,工学博士,副教授,主要研究方向为信号处理、故障诊断。
扫 描 看 全 文
杜小磊,陈志刚,张楠等.基于小波和深度小波自编码器的轴承故障诊断[J].机械传动,2019,43(09):103-108.
Du Xiaolei,Chen Zhigang,Zhang Nan,et al.Rolling Bearing Fault Diagnosis based on Wavelet and Deep Wavelet Auto-encoder[J].Journal of Mechanical Transmission,2019,43(09):103-108.
杜小磊,陈志刚,张楠等.基于小波和深度小波自编码器的轴承故障诊断[J].机械传动,2019,43(09):103-108. DOI: 10.16578/j.issn.1004.2539.2019.09.017.
Du Xiaolei,Chen Zhigang,Zhang Nan,et al.Rolling Bearing Fault Diagnosis based on Wavelet and Deep Wavelet Auto-encoder[J].Journal of Mechanical Transmission,2019,43(09):103-108. DOI: 10.16578/j.issn.1004.2539.2019.09.017.
针对滚动轴承故障严重程度与复合故障难以准确识别的问题,提出了一个基于提升双树复小波包(Lifting Dual-Tree Complex Wavelet Packet,LDTCWP)和深度小波自编码器(Deep Wavelet Auto-Encoder,DWAE)的轴承故障诊断方法。首先,使用迁移学习扩展目标数据量;其次,对轴承振动数据进行3层提升双数复小波包分解,分别计算各子频带信号的样本熵、排列熵和能量矩,作为初始特征向量;最后,将初始特征向量输入DWAE,进行二次特征提取并实现故障诊断。实验结果表明,该方法能有效地对滚动轴承进行多种故障类型和多种故障程度的识别,与传统机器学习方法相比,在目标数据较少的情况下也具有较强的泛化能力、特征提取能力和识别能力。
Aiming at the problem that it is difficult to accurately identify the fault severities and compound faults of rolling bearings,a method based on lifting dual-tree complex wavelet packet(LDTCWP)and deep wavelet auto-encoder (DWAE) is proposed. Firstly,the transfer learning strategy is introduced to extend the target data amount. Secondly,the vibration data of bearings is decomposed into three layers via lifting dual-tree complex wavelet packet. The sample entropy,permutation entropy and energy moment of each sub-band are calculated as raw eigenvectors. Finally,the raw eigenvectors are sent into DWAE for quadratic feature extraction and fault diagnosis. The fault diagnosis experiment results show that the method can effectively identify multiple fault types and multiple fault severities of bearings. Compared with traditional machine learning methods,the proposed method has better generalization ability,feature extraction ability and recognition ability in the case of insufficient target vibration data.
滚动轴承提升双树复小波包深度小波自编码器迁移学习故障诊断
Rolling bearingLifting dual-tree complex wavelet packetDeep wavelet auto-encoderTransfer learningFault diagnosis
朱朔,白瑞林,吉峰.改进CHSMM的滚动轴承剩余寿命预测方法[J].机械传动,2018,42(10):46-52.
俞啸,范春旸,董飞,等.基于EMD与深度信念网络的滚动轴承故障特征分析与诊断方法[J].机械传动,2018,42(6):157-163.
周俊,马建林,徐华,等.EMD降噪在高速铁路路基沉降预测中的应用[J].振动与冲击,2016,35(8):66-72.
王志坚,吴文轩,马维金,等.基于LMD-MS的滚动轴承微弱故障提取方法[J].振动、测试与诊断,2018,38(5):1014-1020.
刘嘉辉,董辛旻,李剑飞.基于全矢谱时间固有尺度分解和独立分量分析盲源分离降噪的滚动轴承故障特征提取[J].中国机械工程,2018,29(8):943-948.
贾亚飞,朱永利,王刘旺.基于VMD和Wigner-Ville分布的局放信号时频分析[J].系统仿真学报,2018,30(2):569-578.
张杏莉,卢新明,贾瑞生,等.基于变分模态分解及能量熵的微震信号降噪方法[J].煤炭学报,2018,43(2):356-363.
LI P,LIU M,ZHANG X,et al.A low-complexity ecg processing algorithm based on the haar wavelet transform for portable health-care devices[J].Science China (Information Sciences),2014,57(12):132-145.
WU Y J,DENG Y,DUAN H B,et al.Dual tree complex wavelet transform approach to copy-rotate-move forgery detection[J].Science China (Information Sciences),2014,57(1):125-136.
SWELDENS W.The lifting scheme:a construction of second generation wavelets[J].Society for Industryand Applied Mathematics on Mathematical Analysis,1998,29(2):511-546.
HINTON G E,OSINDERO S,TEH Y.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554.
TAMILSELVAN P,WANG P F.Failure diagnosis using deep belief learning based health state classification[J].Reliability Engineering and System Safety,2013,115(7):124-135.
张西宁,向宙,夏心锐,等.堆叠自编码网络性能优化及其在滚动轴承故障诊断中的应用[J].西安交通大学学报,2018,52(10):49-56.
WANG X Q,LI Y F,TING R,et al.Bearing fault diagnosis method based on Hilbert envelope spectrum and deep belief network[J].Journal of Vibroengineering.,2015,17(3):1295-1308.
SHAO H D,JIANG H K,ZHAO K W,et al.A novel tracking deep wavelet auto-encoder method for intelligent fault diagnosis of electric locomotive bearings[J].Mechanical Systems and Signal Processing,2018,110(9):193-209.
PAN S J,YANG Q.A survey on transfer learning [J].IEEE Transactions on Knowledge & Data Engineering,2010,22(10):1345-1359.
陈超,沈飞,严如强.改进LSSVM迁移学习方法的轴承故障诊断[J].仪器仪表学报,2017,38(1):33-40.
沈飞,陈超,严如强.奇异值分解与迁移学习在电机故障诊断中的应用[J].振动工程学报,2017,30(1):118-126.
叶会生,陈晓林,周挺,等.提升双树复小波在GIS局部放电监测白噪声抑制的应用[J].高电压技术,2017,43(3):851-858.
韩龙.风力齿轮箱轴承故障的AE信号特征提取与诊断方法研究[D].哈尔滨:哈尔滨工业大学,2016:10-15.
曲建岭,余路,袁涛,等.基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J].仪器仪表学报,2018,39(7):134-143.
LIU X,BO L.Identification of resonance states of rotor bearing system using RQA and optimal binary tree SVM[J].Neurocomputing,2015,152(C):36-44.
郭庆丰,王成栋,刘佩森.时域指标和峭度分析法在滚动轴承故障诊断中的应用[J].机械传动,2016,40(11):172-175.
赵鹏,周云龙,孙斌.递归定量分析在离心泵故障诊断中的运用[J].振动、测试与诊断,2010,30(6):612-616.
FENG J,LEI Y G,LIN J,et al.Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J].Mechanical System and Signal Processing,2016,72/73:303-315.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构