1.武汉理工大学 机电工程学院, 湖北 武汉 430000
吴飞(1973— ),男,河南叶县人,博士,副教授,研究方向机械振动分析、数控技术。
丁军(1994— ),男,湖南常德人,硕士研究生,研究方向为机械振动、故障诊断。
扫 描 看 全 文
吴飞,丁军,刘苏行等.基于VMD和PSO-SVM的汽车传动轴系故障诊断[J].机械传动,2019,43(08):120-124.
Wu Fei,Ding Jun,Liu Suhang,et al.Fault Diagnosis of Transmission Shaft System of Automobile based on VMD and PSO-SVM[J].Journal of Mechanical Transmission,2019,43(08):120-124.
吴飞,丁军,刘苏行等.基于VMD和PSO-SVM的汽车传动轴系故障诊断[J].机械传动,2019,43(08):120-124. DOI: 10.16578/j.issn.1004.2539.2019.08.022.
Wu Fei,Ding Jun,Liu Suhang,et al.Fault Diagnosis of Transmission Shaft System of Automobile based on VMD and PSO-SVM[J].Journal of Mechanical Transmission,2019,43(08):120-124. DOI: 10.16578/j.issn.1004.2539.2019.08.022.
针对传动轴系振动信号故障特征难以提取的问题和进行故障诊断时难以获得大量故障样本的实际情况,提出了一种基于VMD和PSO-SVM相结合的传动轴系故障诊断方法。首先,将传动轴系振动信号进行VMD分解,得到本征模态函数IMF;然后,计算IMF的能量值和对应的能量熵值;最后,用粒子群优化(PSO)优化支持向量机(SVM)的参数,并将归一化处理后IMF的能量值及能量熵值作为特征向量,输入到PSO-SVM中来判断传动轴系的工作状态和故障类型。实验结果表明,该方法故障诊断准确率达到94.44%,可以准确、有效地对传动轴系进行故障诊断。
For the problem that it is difficult to extract fault features of vibration signals of transmission shaft system and the actual situation that it is difficult to obtain a large number of fault samples in fault diagnosis,a fault diagnosis method for transmission shafting based on variational mode decomposition(VMD)sand particle swarm optimization support vector machine (PSO-SVM)is proposed. Firstly, the vibration signal of transmission shaft system is subjected to VMD decomposition, and intrinsic mode function IMF is obtained. Then, the energy value of IMF and the corresponding energy entropy are calculated. Finally, Particle swarm optimization(PSO) is used to optimize the parameters of support vector machine(SVM), and the energy value and energy entropy of normalized IMF are input into the PSO-SVM to identify the working state and fault type of transmission shaft system. The experimental results show that the accuracy of the method is 94.44%, and it can diagnose the fault of transmission shaft system accurately and effectively.
传动轴系故障诊断变分模态分解能量熵粒子群优化支持向量机
Transmission shaft systemFault diagnosisVMDEnergy entropyPSO-SVM
肖云魁,李世义,曹亚娟,等.汽车传动轴振动信号分形维数计算[J].振动、测试与诊断,2005(1):43-47.
严骏,王建新,周朝霞,等.小波消噪和AR谱技术在汽车传动轴故障诊断中的应用[J].解放军理工大学学报(自然科学版),2005(3):285-288.
刘远宏,刘建敏,冯辅周,等.基于2阶循环谱和SVM的汽车传动轴故障诊断[J].噪声与振动控制,2014,34(1):160-163.
HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Procedures of the Royal Society of London,Series A,1998,454(1971): 903-995.
WU Z H,NORDEN E.HUANG.Ensemble empirical mode decomposition: a noise-assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,1(1):1-41.
DRAGOMIRETSKIY K,ZOSSO D.Variational mode decomposition[J].IEEE Transactions on Signal Processing,2014,62(3):531-544.
刘志刚,赵晓燕,张涛,等.风电机组传动链故障智能识别算法研究[J].机械传动,2018,42(9):164-167.
张小龙,张氢,秦仙蓉,等.基于ITD复杂度和PSO-SVM的滚动轴承故障诊断[J].振动与冲击,2016,35(24):102-107.
王新,闫文源.基于变分模态分解和SVM的滚动轴承故障诊断[J].振动与冲击,2017,36(18):252-256.
何园园,张超,朱腾飞.ELMD熵特征融合与PSO-SVM在齿轮故障诊断中的应用[J].机械科学与技术,2019,38(2):271-276.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构