1.海军航空大学 岸防兵学院, 山东 烟台 264001
齐嘉兴(1995— ),男,辽宁沈阳人,硕士研究生,主要研究方向为武器系统集成与燃料保障。
扫 描 看 全 文
齐嘉兴,崔伟成,赵修平.基于局部特征尺度分解和数学形态滤波的齿轮故障诊断方法研究[J].机械传动,2019,43(07):140-145.
Qi Jiaxing,Cui Weicheng,Zhao Xiuping.Research on Gear Fault Diagnosis Method based on Local Characteristic Scale Decomposition and Mathematical Morphological Filtering[J].Journal of Mechanical Transmission,2019,43(07):140-145.
齐嘉兴,崔伟成,赵修平.基于局部特征尺度分解和数学形态滤波的齿轮故障诊断方法研究[J].机械传动,2019,43(07):140-145. DOI: 10.16578/j.issn.1004.2539.2019.07.025.
Qi Jiaxing,Cui Weicheng,Zhao Xiuping.Research on Gear Fault Diagnosis Method based on Local Characteristic Scale Decomposition and Mathematical Morphological Filtering[J].Journal of Mechanical Transmission,2019,43(07):140-145. DOI: 10.16578/j.issn.1004.2539.2019.07.025.
为了实现齿轮故障的精确诊断,针对齿轮早期故障振动信号非线性、非平稳且信噪比低的特点,提出了一种基于局部特征尺度分解(LCD)和数学形态滤波的齿轮故障诊断方法。首先,对齿轮振动信号进行局部特征尺度分解,得到若干内禀尺度分量(ISC);然后,依据峭度准则,选取峭度最大的ISC作为故障特征分量,再运用形态差值滤波器对其进行滤波;最后,对滤波结果求取频谱并进行故障诊断。通过对仿真结果和实验数据的分析,说明了该方法的可行性和有效性。结果表明,该方法具有抑制噪声和提取故障冲击特征的能力,能够有效地实现齿轮故障的精确诊断。
In order to accurately diagnose gear faults, a gear fault diagnosis method based on local characteristic scale decomposition (LCD) and mathematical morphological filtering is proposed, which aims at the non-linear, non-stationary and low signal-to-noise ratio characteristics of vibration signals of early gear faults. Firstly, some Intrinsic Scale Components (ISCs) are obtained by local characteristic scale decomposition of gear vibration signals. Then, according to kurtosis criterion, the ISC with the largest kurtosis is selected as the fault characteristic component, and then filtered by morphological difference filter. Finally, the spectrum of the filtering results is obtained and the fault diagnosis is carried out. The feasibility and validity of the method are illustrated by analyzing the simulation results and experimental data. The results show that the method has the ability to suppress noise and extract fault shock characteristics, and can effectively realize the accurate diagnosis of gear fault.
局部特征尺度分解数学形态滤波齿轮故障诊断
Local characteristic scale decompositionMathematical morphological filteringGearFault diagnosis
王靖岳, 王浩天, 郭立新. 齿轮传动系统故障诊断技术的研究进展[J].机械传动, 2016, 40(8):185-192.
程军圣, 郑近德, 杨宇. 一种新的非平稳信号分析方法——局部特征尺度分解法[J]. 振动工程学报, 2012, 25(2):215-220.
杨宇, 曾鸣, 程军圣. 局部特征尺度分解方法及其分解能力研究[J]. 振动工程学报, 2012, 25(5):602-609.
HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical Physical & Engineering Sciences, 1998, 54(1971):903-995.
HUANG N E, SHEN Z, LONG S R.A new view of nonlinear water waves:the Hilbert spectrum[J].Annual Review of Fluid Mechanics, 1999, 31(1):417-457.
HUANG N E, WU Z H. A review on Hilbert-Huang transform: Method and its applications to geophysical studies[J]. Reviews of Geophysics, 2008, 46(2):1-23.
FREI M G, OSORIO I. Intrinsic time-scale decomposition: Time-frequency-energy analysis and real-time filtering of non-stationary signals[J]. Proceedings of the Royal Society A: Mathematical Physical & Engineering Sciences, 2007, 463(2078):321-342.
胡晓军, 徐飞. MATLAB应用图像处理[M]. 西安:西安电子科技大学出版社, 2011:200-207.
孙敬敬. 数学形态学在振动信号处理中的应用研究[D]. 保定:华北电力大学, 2012:1-5.
沈路, 周晓军, 张文斌, 等. 形态解调在齿轮故障特征提取中的应用[J]. 浙江大学学报(工学版), 2010, 44(8):1514-1518.
沈长青, 朱忠奎, 孔凡让, 等. 形态学滤波方法改进及其在滚动轴承故障特征提取中的应用[J]. 振动工程学报, 2012, 25(4):468-473.
章立军, 杨德斌, 徐金梧, 等. 基于数学形态滤波的齿轮故障特征提取方法[J]. 机械工程学报, 2007, 43(2):71-75.
陈水宣, 邹俊, 易际明, 等. 基于峭度和小波包能量特征的齿轮箱早期故障诊断及抗噪研究[J]. 机械传动, 2012, 36(11):9-14.
李枝荣. 数学形态滤波与局域均值分解在齿轮故障诊断中的应用[D]. 昆明:昆明理工大学, 2014:17-22.
崔屹. 图像处理与分析一数学形态学方法及应用[M]. 北京:科学出版社, 2000:97-112.
沈路, 杨富春, 周晓军, 等. 基于改进 EMD与形态滤波的齿轮故障特征提取[J]. 振动与冲击, 2010, 29(3):154-157.
崔伟成, 张征. 基于局部特征尺度分解与最小熵解卷积的轴承故障诊断[J]. 轴承, 2018(5):51-55.
崔伟成, 许爱强, 李伟, 等. 基于滑动峭度相关性准则的局部特征尺度分解分量筛选方法[J]. 计算机测量与控制, 2016, 24(10):235-239.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构