1.太原理工大学 机械工程学院, 山西 太原 030024
2.太原理工大学 山西省矿山流体控制工程实验室, 山西 太原 030024
3.太原理工大学 矿山流体控制国家地方联合工程实验室, 山西 太原 030024
张展宁(1993— ),男,山西临汾人,硕士研究生,主要研究方向为柔性机构学、机电液一体化。
扫 描 看 全 文
张展宁,张静,寇子明.一种双层回转柔性铰链的设计[J].机械传动,2019,43(07):79-83.
Zhang Zhanning,Zhang Jing,Kou Ziming.Design of a Double-decker Rotating Flexible Hinge[J].Journal of Mechanical Transmission,2019,43(07):79-83.
张展宁,张静,寇子明.一种双层回转柔性铰链的设计[J].机械传动,2019,43(07):79-83. DOI: 10.16578/j.issn.1004.2539.2019.07.015.
Zhang Zhanning,Zhang Jing,Kou Ziming.Design of a Double-decker Rotating Flexible Hinge[J].Journal of Mechanical Transmission,2019,43(07):79-83. DOI: 10.16578/j.issn.1004.2539.2019.07.015.
为了提高回转柔性铰链的平移刚度和回转角度,将直梁与曲面弧形板相结合,形成柔性铰链的变形体,进行了双层回转柔性铰链的设计。基于固定-导向梁的伪刚体模型和串并联弹簧的刚度等效方法,建立了铰链的回转刚度模型。同时,基于伪刚体法建立了柔性铰链的径向平移刚度模型;利用ANSYS软件建立了有限元仿真模型,与理论模型进行了比较,误差约为7%和3%,证明了刚度模型的正确性。通过回转刚度和平移刚度分析,得到所设计的柔性铰链静力学性能,其径向刚度为2 N/mm,可回转角度为30°。
To increase off-axis stiffness and rotating angle, a double-decker rotating flexible hinge is designed, with straight beams and curved plates combined as the flexible body. The model of rotational stiffness is established by pseudo rigid model of fixed-oriented beam and the equivalent method of series and parallel spring. The model of off-axis stiffness is established by the pseudo rigid body method. Then a finite element simulation model is established by using ANSYS software, and compared with the theoretical model. The results show that the rotational stiffness error is about 7% and the off-axis stiffness error is about 3%, which can prove the correctness of the stiffness models. The statics performance of the flexible hinge is clear by analyzing rotating stiffness and off-axis stiffness, whose off-axis stiffness is 2 N/mm and rotating angle is 30°.
柔性铰链伪刚体法刚度模型有限元双层结构
Flexible hingePseudo-rigid-body methodStiffness modelFinite elementDouble-decker
HOWELL L L. Compliant mechanisms[M]. New York: Wiley Interscience, 2001:3-6, 137-138.
于靖军, 郝广波, 陈贵敏, 等. 柔性机构及其应用研究进展[J].机械工程学报, 2015, 51(13):53-68.
于靖军, 裴旭, 毕树生, 等. 柔性铰链机构设计方法的研究进展[J]. 机械工程学报, 2010, 46(13):2-13.
PAROS J M, WEISBORD L. How to design flexurehinges[J]. Machine Design, 1965, 37(27):151-156.
ALEXANDRE E. GUERINOT, MAGLEBY S P,et al. Compliant joint design principles for high compressive load situations[J]. Journal of Mechanical Design, 2005, 127(4):774-781.
LUSK C P. Quantifying uncertainty for planar pseudo-rigid bodymodels[C]. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2011:67-73.
TREASE B P, MOON Y M, SKOTA.Design of large-displacement compliant joints[J]. Journal of Mechanical Design, 2005, 127(4):788-798.
MACHEKPOSHTID F, TOLOU N, HERDER J L. A review on compliant joints and rigid-body constant velocity universal joints toward the design of compliant homokinetic couplings[J]. Journal of Mechanical Design, 2015, 137(3):032301.
余跃庆, 李清清. Y型柔性铰链的设计与实验[J]. 光学精密工程, 2017, 25(2):394-400.
赵山杉, 毕树生, 宗光华, 等. 基于曲线柔性单元的新型大变形柔性铰链[J]. 机械工程学报, 2009, 45(4):8-12.
邱丽芳, 王栋, 印思琪, 等. X形柔性铰链等效刚度分析及结构特性研究[J]. 湖南大学学报(自然科学版), 2017, 44(8):63-69.
GOLDFARB M, SPEICH J. A well-behaved revolute flexure jointfor compliant mechanism design[J]. Journal of Mechanical Design, 1999, 121(3):424-429.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构