1.宝鸡文理学院 机械工程学院, 陕西 宝鸡 721013
2.陕西工业职业技术学院 机械工程学院, 陕西 咸阳 712000
张林(1993— ),男,陕西榆林人,硕士研究生,研究方向为并联机器人机构学理论。
郭旭侠(1976— ),女,陕西长安人,博士,副教授,主要研究方向为机械结构动力学。
扫 描 看 全 文
张林,郭旭侠,史革盟等.3-RRR球面并联机器人正向运动学分析[J].机械传动,2019,43(07):27-34.
Zhang lin,Guo Xuxia,Shi Gemeng,et al.Positive Kinematics Analysis of 3-RRR Spherical Parallel Robot[J].Journal of Mechanical Transmission,2019,43(07):27-34.
张林,郭旭侠,史革盟等.3-RRR球面并联机器人正向运动学分析[J].机械传动,2019,43(07):27-34. DOI: 10.16578/j.issn.1004.2539.2019.07.006.
Zhang lin,Guo Xuxia,Shi Gemeng,et al.Positive Kinematics Analysis of 3-RRR Spherical Parallel Robot[J].Journal of Mechanical Transmission,2019,43(07):27-34. DOI: 10.16578/j.issn.1004.2539.2019.07.006.
针对球面3自由度并联机器人所有关节均为转动关节且关节轴线汇交于一点的结构特点,借助球面上大圆弧与四元数代数的对应关系,将构件的位置用四元数表示。采用四元数的乘积描述关节转动引起的构件位置的变化,通过球面上大圆弧几何加法与四元数乘法之间的对应关系,得到关节轴线的方向余弦,建立了机器人约束方程。对约束方程进行巧妙的变量替换,减少了MATLAB符号运算中的数据,解决了运算中数据超出计算机内存而无法得到有效结果的问题,得到机器人正解封闭方程。利用影响系数法,建立机器人主动构件到末端构件上角锥的角速度和角加速度的传递关系。实例表明,对于给定的主动件的某些位置,上角锥最多有8组运动学解;以机器人主动构件连续运动仿真了上角锥位置、角速度和角加速度变化历程。
In view of the structural characteristics of spherical 3-DOF parallel mechanism, which all the joints are rotating joints and the joint axes intersect at one point, the position of the component is expressed by quaternion by means of the corresponding relationship between the long arc on the sphere surface and quaternion algebra. The product of quaternions is used to describe the component position change caused by joint rotation, and the direction cosine of the joint axis is obtained through the corresponding relationship between the geometric addition of the long arc on the sphere surface and the multiplication of quaternions, thus the constraint equation of the robot is established. The constraint equation is proceed subtly by a clever variable, which reduced the data in the symbolic operation of MATLAB, solved the problem that the effective results could not be obtained when the operation exceeded the computer memory, and the positive closed equation of the robot is established. By using the influence coefficient method, the transfer relation between the angular velocity and angular acceleration of the robot active component and the corner cone on the end component is established. The examples show that, there are 8 kinematics solutions for the given position of the active component in the top pyramid group. And according to the example of the continuous motion of the active robot component, the changing course of angular velocity and angular acceleration in the position of the top pyramid is simulated.
球面并联机器人四元数代数正解封闭方程影响系数
Spherical parallel robotQuaternion algebraPositive closed equationInfluence coefficient
杨健, 周鑫, 柳伟兵, 等. 3-RRR球面并联机构优化设计研究[J]. 机械设计与制造, 2018(7):119-122.
周玉林, 刘磊, 高峰. 3自由度球面并联机构3-RRR静力全解[J]. 机械工程学报, 2008, 44(6):169-176.
史革盟, 鲁开讲. 并联机构工作空间与奇异位形分析[J]. 机械传动, 2014, 38(11):54-59.
KONG X W. Reconfiguration analysis of a 3-DOF parallel mechanism using Euler parameter quaternions and algebraic geometry method[J]. Mechanism and Machine Theory, 2014(74):188-201.
GOLUBEV Y F. Quaternion algebra in rigid body kinematics[J].Keldysh Institute Preprints, 2013(2013):39-44.
李秦川, 陈欢欢, 李昳, 等. 3-P_C(RR)_N球面三自由度并联机构的运动学分析[J]. 中国机械工程, 2009, 20(11):1280-1285.
李成刚, 缪群华, 吴洪涛. 四元数表示的球面机构运动学分析[J]. 组合机床与自动化加工技术, 2009(11):37-40.
ROLLAND L. Synthesis on the forward kinematics problem algebraic modeling for the planar parallel manipulator: displacement-based equation systems[J]. Advances in Robotics, 2006, 20(9):1035-1065.
NASA C, BANDYOPADHYAY S. Trajectory-tracking control of a planar 3-RRR parallel manipulator[C]//13th World Congress in Mechanism and Machine Science, 2011:19-25.
崔建昆, 俞佳俊, 曹丽亚. 3-RRR平面并联机器人全姿态工作空间及其特性研究[J]. 机械传动, 2018, 42(9):145-148.
OLARU A, OLARU S, MIHAI N. Proper lab view instrumentation of the Robot’s Kinematics and Dynamics Behavior[J]. Applied Mechanics and Materials, 2015, 811:291-299.
CAO G Q, ZHAO Z R. Mechanical analysis of the industrial robot to upgrade to the gaming robot[J]. Procedia Engineering, 2017, 174:1077-1083.
勃拉涅茨 B H, 什梅格列夫斯基N T. 四元数在刚体定位问题中的应用[M]. 梁振和, 译. 北京:国防工业出版社, 1978:23-28.
黄真, 赵永生, 赵铁石. 高等机构学[M]. 北京:高等教育出版社, 2006:201-210.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构