1.南京信息工程大学 自动化学院, 江苏 南京 210044
周旺平(1975— ),男,安徽枞阳人,博士,副教授,硕士生导师,主要研究方向为计算机与自动控制技术、数字信号处理故障诊断。
扫 描 看 全 文
周旺平,王蓉,许沈榕.ABC-VMD和包络谱分析在齿轮故障诊断中的应用[J].机械传动,2019,43(04):150-156.
Zhou Wangping,Wang Rong,Xu Shenrong.Application of ABC-VMD and Envelope Spectrum Analysis in Gear Fault Diagnosis[J].Journal of Mechanical Transmission,2019,43(04):150-156.
周旺平,王蓉,许沈榕.ABC-VMD和包络谱分析在齿轮故障诊断中的应用[J].机械传动,2019,43(04):150-156. DOI: 10.16578/j.issn.1004.2539.2019.04.028.
Zhou Wangping,Wang Rong,Xu Shenrong.Application of ABC-VMD and Envelope Spectrum Analysis in Gear Fault Diagnosis[J].Journal of Mechanical Transmission,2019,43(04):150-156. DOI: 10.16578/j.issn.1004.2539.2019.04.028.
针对齿轮箱故障的非线性、非稳定性特点,提出了一种参数优化变分模态分解(Variational mode decomposition,简称VMD)提取特征频率的方法。首先,利用人工蜂群算法(Artificial bee colony algorithm,简称ABC)对VMD分解的层数和惩罚因子进行自适应选择;其次,根据互信息法在VMD分解后得到的有限个本征模态函数(Intrinsic mode function,简称IMF)中选择最佳模态函数;最后,对该模态函数进行包络谱分析,有效提取齿轮故障特征频率。仿真与实验结果表明,与经验模态分解(Empirical mode decomposition,简称EMD)以及基于粒子群优化算法(Particle swarm optimization,简称PSO)的变分模态分解方法相比较,ABC-VMD方法自适应性强,可以有效克服模态混叠、信号丢失及过度分解问题,能够准确诊断齿轮箱故障,同时避免PSO-VMD易陷入局部最优的缺点。
Aiming at the nonlinear and unsteady characteristics of gearbox fault, a parameter-optimized Variational mode decomposition (VMD) is proposed to extract the characteristic frequency. Firstly, the Artificial bee colony algorithm (ABC) is used to adaptively select the number of layers and the penalty factor for VMD. Then, according to the mutual information method, the optimal finite Intrinsic mode function (IMF) is selected after VMD. Finally, the envelope spectrum analysis of the best IMF is performed to extract the characteristic signal of the gear fault. Comparing with Empirical mode decomposition (EMD) and VMD based on Particle swarm optimization (PSO), simulation and experimental results show that the ABC-VMD method has strong adaptability, which can effectively avoid problems of mode mixing, signal loss and excessive decomposition. It can accurately perform early fault diagnosis on the gearbox and at the same time avoid the disadvantages of PSO-VMD falling into local optimum.
变分模态分解人工蜂群算法包络谱分析齿轮箱故障诊断
Variational mode decompositionArtificial bee colony algorithmEnvelope spectrum analysisGearbox fault diagnosis
章翔峰, 孙文磊, 姜宏. 基于VKF-OT和DFA的齿轮时变状态特征提取方法[J]. 振动、测试与诊断, 2018, 38(2):299-304.
ZHANG D, FENG Z. Application of variational mode decomposition based demodulation analysis in gearbox fault diagnosis[C]// Proceedings of the Instrumentation and Measurement Technology Conference. New York:IEEE, c2016:1-6.
BENDJAMA H, BOUHOUCHE S, BOUCHERIT M S. Application of wavelet transform for fault diagnosis in rotating machinery [J]. International Journal of Machine Learning and Computing, 2012, 2(1):82-87.
张德祥, 汪萍, 吴小培, 等. 基于EMD和非线性峭度的齿轮故障诊断[J]. 振动、测试与诊断, 2012, 32(1):56-61.
郑近德, 程军圣. 改进的希尔伯特-黄变换及其在滚动轴承故障诊断中的应用[J]. 机械工程学报, 2015, 51(1):138-145.
LI R, HE D. Rotational machine health monitoring and fault detection using EMD-based acoustic emission feature quantification [J]. IEEE Transactions on Instrumentation & Measurement, 2012, 61(4):990-1001.
李力, 倪松松. 基于改进小波去噪预处理和EEMD的采煤机齿轮箱故障诊断[J]. 中南大学学报(自然科学版), 2016, 47(10):3394-3400.
胥永刚, 谢志聪, 崔玲丽, 等. 基于ITD的齿轮磁记忆信号特征提取方法的研究[J]. 仪器仪表学报, 2013, 34(3):671-676.
DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
郑近德, 潘海洋, 杨树宝, 等. 广义变分模态分解方法及其在变工况齿轮故障诊断中的应用[J]. 振动工程学报, 2017, 30(3):502-509.
唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49(5):73-81.
姜战伟, 郑近德, 潘海洋, 等. POVMD与包络阶次谱的变工况滚动轴承故障诊断[J]. 振动、测试与诊断, 2017, 37(3):609-616.
XUE Y J, CAO J X, WANG D X, et al. Application of the Variational-Mode Decomposition for Seismic Time–frequency Analysis [J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 9(8):3821-3831.
陈克坚, 崔伟成, 朱良明. 基于变分模态分解与最小熵解卷积的齿轮故障诊断[J].计算机测量与控制, 2018, 26(3):54-57.
ZHANG X, ZHANG X, WANG L. Antenna design by an adaptive variable differential artificial bee colony algorithm[J]. IEEE Transactions on Magnetics, 2017(99):1.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构