1.南昌大学 机电工程学院, 江西 南昌 330031
2.华东交通大学, 江西 南昌 330013
李少帅(1994— ),男,河南新乡人,硕士研究生,主要研究方向为机器人机构学 。
石志新(1979— ),男,湖北黄梅人,博士,副教授,硕士生导师,主要研究方向为机器人机构学、机电系统创新设计等。
扫 描 看 全 文
李少帅,罗玉峰,石志新等.基于踝关节运动特性的三转动并联机构构型优选及仿真分析[J].机械传动,2019,43(03):76-82.
Li Shaoshuai,Luo Yufeng,Shi Zhixin,et al.Optimal Type Selection and Simulation Analysis of 0T3R Parallel Mechanism based on the Motion Characteristic of Ankle[J].Journal of Mechanical Transmission,2019,43(03):76-82.
李少帅,罗玉峰,石志新等.基于踝关节运动特性的三转动并联机构构型优选及仿真分析[J].机械传动,2019,43(03):76-82. DOI: 10.16578/j.issn.1004.2539.2019.03.014.
Li Shaoshuai,Luo Yufeng,Shi Zhixin,et al.Optimal Type Selection and Simulation Analysis of 0T3R Parallel Mechanism based on the Motion Characteristic of Ankle[J].Journal of Mechanical Transmission,2019,43(03):76-82. DOI: 10.16578/j.issn.1004.2539.2019.03.014.
根据人体踝关节的运动生理特点和并联机构的特点,以单开链为单元,基于方位特征集理论,对三转动并联机构进行了型综合;结合踝关节的特点,优选出了一种能辅助实现人体踝关节运动的三转动并联机构,并对其进行了运动学分析。基于建立的逆解方程,利用Matlab进行数据求解,最后将所得数据作为驱动函数在Adams中对机构进行仿真分析,仿真结果验证了该并联机构的应用可行性,同时为后续的机构尺寸优化设计提供了理论基础。
According to the physiological characteristics of human ankle and parallel mechanism, several 0T3R parallel mechanisms are synthesized based on the Position and Orientation Characteristics (POC) set by taking the Single-Opened Chain (SOC) as the unit. Then combined with the characteristics of human ankle, one of the 0T3R parallel mechanisms is selected, and its kinematics analysis is carried out. Based on the established inverse displacement solution equation and by using the Matlab, the data solving is carried out. Finally, the obtained data is used as the driving function to simulate the mechanism in Adams. The simulation results verify the feasibility of the parallel mechanism, and a theoretical basis for the subsequent optimization design of mechanism size is provided.
康复机器人踝关节并联机构方位特征集运动学分析仿真
Rehabilitation robotAnkle jointParallel mechanismPOC setKinematics analysisSimulation
沈惠平, 杨梁杰, 邓嘉鸣, 等. 用于肩关节康复训练的单输入三转动输出并联机构及其运动学设计[J]. 中国机械工程, 2015, 26(22):2983-2988.
CHEN B, MA H, QIN L Y, et al. Recent developments and challenges of lower extremity exoskeletons[J]. Journal of Orthopaedic Translation, 2016, 5(C):26-37.
BICKER R, BURN K, HU Z X, et al. The early development of remote tele-manipulation systems[J]. Spine, 2004, 27(22):2453-2458.
MORIMOTO J, ATKESON C G. Learning biped locomotion[J]. Robotics & Automation Magazine, 2007, 14(2):41-51.
DOLLAR A M, HERR H. Lower extremity exoskeletons and active rthoses: challenges and state-of-the-art[J]. IEEE Transactions on Robotics, 2008, 24(1):144-158.
ALCOBENDASMAESTRO M, ESCLARÍNRUZ A, CASADOLÓPEZ R M, et al. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion:randomized controlled trial[J]. Neurorehabilitation & Neural Repair, 2012, 26(9):1058.
ATSUSHI Tsukahara, RYOTA Kawanishi, YASUHISA Hasegawa, et al. Sit-to-stand and stand-to-sit transfer support for complete paraplegic patients with robot suit HAL[J]. Advanced Robotics, 2010, 24(11):1615-1638.
ESQUENAZI A, TALATY M, PACKEL A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury[J]. American Journal of Physical Medicine and Rehabilitation, 2012, 91(11):911-921.
GUIZZO E, DEYLE T. Robotics trends for 2012 [the future is robots][J]. IEEE Robotics & Automation Magazine, 2012, 19(1):119-123.
QUINTERO H A, FARRIS R J, GOLDFARB M. A method for the autonomous control of lower limb exoskeletons for persons with paraplegia[J]. Journal of Medical Devices, 2012, 6(4):3097-3106.
刘颖超. 气动并联式踝关节康复机器人的研究[D].哈尔滨:哈尔滨工业大学, 2014:20-33.
CHEN B, ZHONG C H, ZHAO X, et al. A wearable exoskeleton suit for motion assistance to paralysed patients[J]. Journal of Orthopaedic Translation, 2017, 11(C):7-18.
ROY A, KREBS H I, WILLIAMS D J, et al. Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation[J]. IEEE Transactions on Robotics, 2009, 25(3):569-582.
FERRIS D P, GORDON K E, SAWICKI G S, et al. An improved powered ankle–foot orthosis using proportional myoelectric control[J]. Gait & Posture, 2006, 23(4):425-428.
GORDON K E, SAWICKI G S, FERRIS D P. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis[J]. Journal of Biomechanics, 2006, 39(10):1832-1841.
KINNAIRD C R, FERRIS D P. Medial gastrocnemius myoelectric control of a robotic ankle exoskeleton[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering A Publication of the IEEE Engineering in Medicine & Biology Society, 2009, 17(1):31.
WANG C Z, FANG Y F, GUO S, et al. Design and Kinematical Performance Analysis of a 3- R US/ R RR Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation[J]. Journal of Mechanisms & Robotics, 2013, 5(4):041003.
张帆. 并联机构特性分析与综合研究[D]. 上海:东华大学, 2008:35-43.
杨廷力, 刘安心, 罗玉峰, 等. 机器人机构拓扑结构设计[M]. 北京:科学出版社, 2012:9-150.
HUANG Z, LI Q C. General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators[J]. International Journal of Robotics Research, 2002, 21(2): 131-145.
黄真, 李秦川. 少自由度并联机器人机构的型综合原理[J]. 中国科学E辑:技术科学, 2003, 33(9): 813-819.
Lee C, Hervé J M. Uncoupled actuation of overconstrained 3T-1R hybrid parallel manipulators[J]. Robotica, 2009, 27(1): 103-117.
李秦川, 黄真. 基于位移子群分析的3自由度移动并联机构型综合[J]. 机械工程学报, 2003, 39(6):18-21.
国家技术监督局. GB 10000-88中国成年人人体尺寸[S]. 北京: 中国标准出版社, 1989.
张志涌, 杨祖樱. MATLAB教程:R2010a[M]. 北京:北京航空航天大学出版社, 2010:34-64.
邓志党. 机械系统动力学分析及ADAMS应用教程[M]. 北京:清华大学出版社, 2005:66-87.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构