1.清华大学 机械工程系, 北京 100084
苏靖惟(1993— ),男,台湾人,在读硕士研究生,主要研究方向为机器人技术及自动化。
张文增(1975— ),男,贵州凯里人,博士,副教授,主要研究方向为拟人机器人与欠驱动手、机器人视觉与视觉伺服、焊缝跟踪。
扫 描 看 全 文
苏靖惟,张文增.单链传动双齿条平夹间接自适应机器人手研制[J].机械传动,2019,43(02):154-161.
Su Jingwei,Zhang Wenzeng.Development of a Parallel and Indirectly Self-adaptive Robot Hand with Single-chain Transmission of Double-rack Mechanism[J].Journal of Mechanical Transmission,2019,43(02):154-161.
苏靖惟,张文增.单链传动双齿条平夹间接自适应机器人手研制[J].机械传动,2019,43(02):154-161. DOI: 10.16578/j.issn.1004.2539.2019.02.028.
Su Jingwei,Zhang Wenzeng.Development of a Parallel and Indirectly Self-adaptive Robot Hand with Single-chain Transmission of Double-rack Mechanism[J].Journal of Mechanical Transmission,2019,43(02):154-161. DOI: 10.16578/j.issn.1004.2539.2019.02.028.
传统平夹自适应手指采用并联的两套传动机构,存在机构复杂的缺点。提出了一种具有单链式平夹间接自适应复合抓取模式的机械手(PISA手)。PISA手指包括3个齿轮、2个齿条、滑块、拨块、限位块和单个弹簧等,由单个电机驱动双关节手指转动。PISA手能用远指段平行夹持物体,用有滑块的近指段和远指段自适应包络物体。介绍了PISA手的组成和运动过程,进行抓取范围和抓取力大小的理论分析,研制带有3个PISA手指的PISA机器人手。通过仿真和抓取实验结果表明,PISA手能根据物体不同的形状在不同的位置,自主切换平夹或是间接自适应的抓取模式,实现稳定抓取。PISA手指具有传动效率高,手指结构紧凑特点。
Traditional robot fingers with parallel and self-adaptive hybrid grasping mode have double-chain transmission mechanisms, which have disadvantages of complexity in mechanisms. A novel design of a parallel and indirectly self-adaptive underactuated robot finger with a single chain transmission mechanism, called PISA hand is presented. The method uses three gears, two racks, a slider, a block, a limit and a spring to achieve using a single motor to drive two phalanges. The PISA finger can realized the pinching grasp with the distal phalanx and enveloping grasp with the proximal phalanx with a slider and the distal phalanx. The composition and movement process of the PISA finger are introduced in detail. Theoretical analysis of the range and grasping force are given. Simulation and experimental results show that the PISA finger can automatically switch the grasping modes according to the different positions and shapes of the object so as to achieve stable grasping. The PISA hand has high transmission efficiency, compact structure.
机器人手欠驱动手间接自适应平夹抓取单链传动
Robot handUnderactuated handIndirect self-adaptionParallel pinchSingle chain transmission
JACOBSEN S C, WOOD J E, KNUTTI D F, et al. The UTAH/M. I. T. Dextrous hand: work in progress[J]. International Journal of Robotics Research, 1984, 3(4): 21-50.
MATSUOKA Y, AFSHAR P, OH M. On the design of robotic hands for brain-machine interface[J]. Neurosurgical Focus, 2006, 20(5): 3.
AMBROSE R O, ALDRIDGE H, ASKEW R S, et al. Robonaut: NASA's space humanoid[J]. Intelligent Systems & Their Applications IEEE, 2000, 15(4): 57-63.
GAO X H, JIN M H, JIANG L, et al. The HIT/DLR dexterous hand: work in progress[C]// Proceedings of the 2003 IEEE International conference on Robotics and Automation, New York: IEEE, 2003: 3164-3168.
GAZEAU J P, ZEHLOUL S, ARSICAULT M, et al. The LMS hand: force and position controls in the aim of the fine manipulation of objects[C]// Proceedings of the 2003 IEEE International conference on Robotics and Automation, 2001. New York: IEEE, 2001: 2642-2648.
HIROSE S, UMETANI Y. The development of soft gripper for the versatile robot hand[J]. Mechanism and Machine Theory, 1978, 13(3): 351-359.
GAISER I, SCHULZ S, KARGOV A, et al. A new anthropomorphic robotic hand[C]// Humanoids 2008 IEEE-Ras International Conference on Humanoid Robots. New York: IEEE, 2008: 418-422.
PONS J L, ROCON E, CERES R, et al. The Manus-hand dextrous robotics upper limb prosthesis: mechanical and manipulation aspects[J]. Autonomous Robots, 2004, 16(2): 143-163.
KYBERD P J, CHAPPELL P H. The Southampton Hand: an intelligent myoelectric prosthesis[J]. Journal of Rehabilitation Research and Development, 1994, 31(4): 326.
HIRANO D, NAGAOKA K, YOSHIDA K. Design of underactuated hand for caging-based grasping of free-flying object[C]// IEEE/SICE International Symposium on System Integration. New York: IEEE, 2013: 436-442.
YOON D, CHOI Y. Underactuated finger mechanism using contractible slider-Cranks and stackable four-bar linkages[J]. IEEE/ASME Transactions on Mechatronics, 2017(99):1.
LALIBERTE´ T, GOSSELIN C. Simulation and design of underactuated mechanical hands[J]. Mechanism and Machine Theory, 1998, 33(1/2):39-57.
LALIBERTé T, GOSSELIN C M. Underactuation in space robotic hands[C]// Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space: i-SAIRAS 2001, June18-22, St-Hubert, Canada. Quebec: Canadian Space Agency, 2001.
DEMERS L A A, LEFRANÇOIS S, JOBIN J P. Gripper having a two degree of freedom underactuated mechanical finger for encompassing and pinch grasping: US 8973958[P]. 2015-3-10.
CIOCARLIE M, HICKS F M, HOLMBERG R, et al. The Velo gripper: a versatile single-actuator design for enveloping, parallel and fingertip grasps[J]. International Journal of Robotics Research, 2014, 33(5): 753-767.
LIANG D, SONG J, ZHANG W, et al. PASA hand: a novel parallel and self-adaptive underactuated hand with gear-link mechanisms[C]// International Conference on Intelligent Robotics and Applications. Cham: Springer International Publishing, 2016: 134-146.
KAMAKURA N, MATSUO M, ISHII H, et al. Patterns of static prehension in normal hands[J]. American Journal of Occupational Therapy Official Publication of the American Occupational Therapy Association, 1980, 34(7): 437-45.
BIRGLEN L, GOSSELIN C M. Kinetostatic analysis of underactuated fingers[J]. IEEE Transactions on Robotics & Automation, 2004, 20(2): 211-221.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构