1. 天津大学数学学院
2. 中国民航大学航空工程学院
3. 中国民航大学天津市民用航空器适航与维修重点实验室
扫 描 看 全 文
[1]申倩,谢伟松,刘佳杭,何振鹏.多跨度裂纹转子-滚动轴承动力学特性分析[J].机械传动,2018,42(12):34-42.
Shen Qian, Xie Weisong, Liu Jiahang, et al. Analysis of Dynamics Characteristic of Multi-span Cracked Rotor-rolling Bearing[J]. 2018,42(12):34-42.
[1]申倩,谢伟松,刘佳杭,何振鹏.多跨度裂纹转子-滚动轴承动力学特性分析[J].机械传动,2018,42(12):34-42. DOI: 10.16578/j.issn.1004.2539.2018.12.007.
Shen Qian, Xie Weisong, Liu Jiahang, et al. Analysis of Dynamics Characteristic of Multi-span Cracked Rotor-rolling Bearing[J]. 2018,42(12):34-42. DOI: 10.16578/j.issn.1004.2539.2018.12.007.
在考虑由裂纹产生的附加刚度、滚动轴承非线性赫兹接触以及由滚动轴承支撑刚度变化而产生的VC(Varying compliance)振动的基础上,利用拉格朗日方程建立了滚动轴承支撑下含横向裂纹的双跨度转子模型,综合考虑离心、碰摩等故障,采用变步长Runge-Kutta法对单一及耦合故障导致的系统非线性动力学行为进行数值仿真,结合分岔图、轴心轨迹图、Poincaré截面图和三维谱图等,分析了裂纹扩展、裂纹角和滚动轴承径向间隙对系统响应的影响。结果表明,单一故障时,在超临界转速区有较大范围的混沌运动出现;耦合故障时,在亚临界转速区受不平衡旋转与VC振动的组合影响进入拟周期运动,超过临界转速后开始分频,表现出强非线性特性;裂纹较浅时对系统响应的影响不明显,裂纹较深时在高转速区系统响应变化明显;裂纹角对混沌运动影响较大、对周期运动无本质影响;系统响应对滚动轴承间隙的变化具有敏感性。研究结果对控制和预测旋转机械故障有一定的指导意义。
Based on the additional stiffness caused by the crack,the non-linear Hertz contact of the rolling bearing,and the Varying compliance( VC) vibration caused by the variation of the bearing stiffness of the rolling bearing,a double-span rotor model with transverse crack under rolling bearing support is established by Lagrange equation. Considering the problems of eccentricity and rubbing,the nonlinear dynamics behaviors of the system caused by singular and coupled faults are numerically simulated by the variable step Runge-Kutta method. The effects of crack propagation,crack angle and rolling bearing radial clearance on the system response are analyzed based on the bifurcation diagram,axial locus diagram,Poincare section diagram and 3 D spectrum. The results show that when a single fault occurs,a large range of chaotic motions occur in the supercritical rotational speed region. When the coupling fault occurs,the response of the system is affected by the combination of unbalanced rotation and VC vibration in the subcritical rotational speed region and enters the quasi-periodic,the frequency division begins after exceeding the critical speed,it shows strong nonlinear characteristic. When the crack is shallow,the influence on the system response is not obvious. When the crack is deeper,the response of the system changes obviously in the high revolving speed area. The crack angle has a great influence on the chaos motion. There is no essential effect on the periodic movement,the system response is sensitive to the change of the rolling bearing clearance. The research results have certain guiding significance for controlling and predicting the failure of rotating machinery.
转子-滚动轴承系统非线性响应龙格库塔法辛普森法裂纹碰摩
Rotor-rolling bearing systemNonlinear responseRunge-Kutta methodSimpson methodCrackRub-impact
0
浏览量
234
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构