1. 湖南大学汽车车身先进设计制造国家重点实验室
扫 描 看 全 文
[1]杨宇,朱正祥,程军圣.基于FA-ASTFA和最小凸包的齿轮裂纹故障预测模型[J].机械传动,2018,42(01):78-82+97.
Yang Yu, Zhu Zhengxiang, Cheng Junsheng. Forecasting Model of Gear Crack Fault based on FA-ASTFA and Minimum Convex Hull[J]. 2018,42(1):78-82.
[1]杨宇,朱正祥,程军圣.基于FA-ASTFA和最小凸包的齿轮裂纹故障预测模型[J].机械传动,2018,42(01):78-82+97. DOI: 10.16578/j.issn.1004.2539.2018.01.017.
Yang Yu, Zhu Zhengxiang, Cheng Junsheng. Forecasting Model of Gear Crack Fault based on FA-ASTFA and Minimum Convex Hull[J]. 2018,42(1):78-82. DOI: 10.16578/j.issn.1004.2539.2018.01.017.
自适应最稀疏时频分析(ASTFA)方法采用高斯牛顿迭代,自适应地实现信号的稀疏分解,但该方法必须根据经验确定一个初始相位,作为高斯牛顿迭代的初值。为了防止迭代结果发散,针对初始相位最优选择问题,提出了一种改进的ASTFA算法,即基于萤火虫算法(Firfly Algorithm)的ASTFA方法(简称FA-ASTFA),仿真与试验信号分析结果证明了改进算法的有效性。相比传统时域特征,最小凸包能提取信号的空间信息。基于此,提出了基于FA-ASTFA和最小凸包的齿轮裂纹故障预测模型,试验对比分析表明,预测模型在预测齿轮早期裂纹故障时比传统预测模型具有更大的可靠性和准确性。
The adaptive and sparsest time-frequency analysis(ASTFA) can realize signal spare decomposition adaptively by using Gauss-Newton iteration,but Gauss-Newton iteration is very sensitive to initial value which is determined by experience. In order to keep Gauss-Newton iteration converge,an improved method based on Firefly Algorithm(FA) is introduced to ASTFA,the validity of improvement is proved by simulation and experiment. Compared to traditional time-domain features,the minimum convex hull is capable to extract spatial information of the signal. One the basis,the forecasting model of gear crack fault based on FA-ASTFA and minimum convex hull is presented. The experimental analysis shows that the proposed model is more reliable and accurate than the traditional forecasting model for predicting the degree of gear incipient crack fault.
自适应最稀疏时频分析萤火虫算法最小凸包齿轮裂纹预测模型
Adaptive and sparsest time-frequency analysisFirefly algorithmMinimum convex hullGear crack forecasting model
0
浏览量
127
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构