浏览全部资源
扫码关注微信
1.湘潭理工学院 汽车工程学院,湘潭 411100
2.湖南农业大学 机电工程学院,长沙 410128
范晨晖,男,1991年生,湖南湘潭人,硕士研究生,讲师;主要研究方向为机器人轨迹规划;liuxuan1234562024@163.com。
网络出版日期:2024-10-21,
收稿日期:2024-06-07,
修回日期:2024-08-13,
移动端阅览
范晨晖,刘欢,刘玄等.基于相贯线焊缝的机器人焊接轨迹优化[J].机械传动,XXXX,XX(XX):1-9.
FAN Chenhui,LIU Huan,LIU Xuan.Robot welding trajectory optimization based on intersecting line welds[J].Journal of Mechanical Transmission,XXXX,XX(XX):1-9.
目的
2
在焊接和喷涂等非接触加工中,运行效率、平稳性和能耗一直是工业机器人轨迹优化的瓶颈问题。为此,提出了一种基于改进粒子群算法的轨迹规划方法。
方法
2
首先,提出一种基于平滑路径的加速度连续性约束方法,使机器人各关节的速度、加速度和急动度是有界和连续的;其次,提出一种可变角插值法来选择最优焊枪末端轨迹离散点;最后,采用精英突变策略的粒子群求解最优能耗对应的时间序列,提出一种应用平均模糊隶属度函数筛选出帕累托前沿最佳解的方法,进而规划出能耗的最优连续运动轨迹。
结果
2
试验结果表明,该方法从最佳时间、冲击的平衡以及加速度的连续性三个方面进行了提升;对比标准粒子群和遗传算法寻优能力分别提升22.83%和25.63%。Adams动力学仿真和实际焊接试验结果显示,规划轨迹满足工业焊接需求。
Objective
2
Operational efficiency
smoothness and energy consumption have been bottlenecks in the trajectory optimization for industrial robots in the non-contact processing such as welding and painting. To this end
a trajectory planning method based on the improved particle swarm algorithm was proposed.
Methods
2
Firstly
an acceleration continuity constraint method based on smooth paths was proposed so that the velocity
acceleration and jerk of each joint of the robot were bounded and continuous. Secondly
a variable angle interpolation method was proposed to select the optimal torch end trajectory discrete points. Finally
a particle swarm with an elite mutation strategy was used to solve the time series corresponding to the optimal energy consumption. A method was proposed to apply an average fuzzy affiliation function to screen out the best solution of the Pareto front
and then the optimal continuous motion trajectory of energy consumption was planned.
Results
2
The experimental results show that the method improves the optimal time
the balance of shocks and the continuity of acceleration
and improves the optimization ability by 22.83% and 25.63% compared to the standard particle swarm and the genetic algorithm
respectively. Planning trajectories to meet industrial welding requirements were shown by Adams dynamic simulation.
相贯焊缝轨迹规划精英突变改进粒子群算法模糊隶属度
Intersecting weldTrajectory planningElite mutationImproved particle swarm optimization algorithmFuzzy affiliation
LE J,ZHANG H,CHAI Z,et al. The system design of an autonomous mobile welding robot[J]. Journal of Circuits,Systems and Computers,2021,30(11):2150205.
CHODHA V,DUBEY R,KUMAR R,et al. Selection of industrial arc welding robot with TOPSIS and Entropy MCDM techniques[J]. Materials Today:Proceedings,2022,50:709-715.
白云飞,张奇峰,范云龙,等. 基于能耗优化的深海电动机械臂轨迹规划[J]. 机器人,2020,42(3):301-308.
BAI Yunfei,ZHANG Qifeng,FAN Yunlong,et al. Trajectory planning of deep-sea electric manipulator based on energy optimization[J]. Robot,2020,42(3):301-308.
蔡敢为,班彩霞,田军伟,等. 混联焊接机器人运动学分析及轨迹优化[J]. 机械传动,2023,47(12):19-25.
CAI Ganwei,BAN Caixia,TIAN Junwei,et al. Kinematics analysis and trajectory optimization of the hybrid welding robot[J]. Journal of Mechanical Transmission,2023,47(12):19-25.
王晓明,宋吉,郑继新,等. 改进B样条曲线的机器人轨迹拟合研究[J]. 传感器与微系统,2021,40(2):41-43.
WANG Xiaoming,SONG Ji,ZHENG Jixin,et al. Research on robot trajectory fitting based on improved B-spline curve[J]. Transducer and Microsystem Technologies,2021,40(2):41-43.
CARLSON J S,SPENSIERI D,WÄRMEFJORD K,et al. Minimizing dimensional variation and robot traveling time in welding stations[J]. Procedia CIRP,2014,23:77-82.
XIAO Y Q,DU Z J,DONG W. Smooth and near time-optimal trajectory planning of industrial robots for online applications[J]. Industrial Robot,2012,39(2):169-177.
LI S Q, ZHANG X F. Research on planning and optimization of trajectory for underwater vision welding robot[J]. Array,2022,16:100253.
WANG X W,SHI Y P,DING D Y,et al. Double global optimum genetic algorithm-particle swarm optimization-based welding robot path planning[J]. Engineering Optimization,2016,48(2):299-316.
曹钰婷,王金涛,刘明敏,等. 基于时间最优的机器人位姿同步轨迹规划方法[J]. 组合机床与自动化加工技术,2024(2):61-65.
CAO Yuting,WANG Jintao,LIU Mingmin,et al. Robot pose synchronization trajectory planning method based on time optimization[J].Modular Machine Tool & Automatic Manufacturing Technique,2024(2):61-65.
MARTINSEN A B,LEKKAS A M,GROS S. Optimal model-based trajectory planning with static polygonal constraints[J].IEEE Transactions on Control Systems Technology,2022,30(3):1159-1170.
党博宇,李海燕. 基于改进PSO算法的移动机器人最优路径规划[J]. 组合机床与自动化加工技术,2024(2):71-74.
DANG Boyu,LI Haiyan. Optimal path planning for mobile robot based on improved PSO algorithm[J]. Modular Machine Tool & Automatic Manufacturing Technique,2024(2):71-74.
ZHAO Y T,GAN L,LI W G,et al. Path planning of spot welding robot based on multi-objective grey wolf algorithm[J]. Journal of Intelligent & Fuzzy Systems,2021,41(6):6181-6189.
XIONG J H,FU Z T,LI M,et al. Trajectory-smooth optimization and simulation of dual-robot collaborative welding[C]//Proceedings of the Intelligent Robotics and Applications:14th International Conference. Cham: Springer,2021:699-709.
ESHTEHARDIAN S A,KHODAYGAN S. A continuous RRT*- based path planning method for non-holonomic mobile robots using B-spline curves[J]. Journal of Ambient Intelligence and Humanized Computing,2023,14(7):8693-8702.
朱世强,刘松国,王宣银,等. 机械手时间最优脉动连续轨迹规划算法[J]. 机械工程学报,2010,46(3):47-52.
ZHU Shiqiang,LIU Songguo,WANG Xuanyin,et al. Time-optimal and jerk-continuous trajectory planning algorithm for manipulators[J]. Journal of Mechanical Engineering,2010,46(3):47-52.
KUCUK S. Optimal trajectory generation algorithm for serial and parallel manipulators[J]. Robotics and Computer Integrated Manufacturing,2017,48:219-232.
施法中. 计算机辅助几何设计与非均匀有理B样条[M]. 2版. 北京:高等教育出版社,2013:135-181.
SHI Fazhong. Computer aided geometric design and non-uniform rational B-splines[M]. 2nd ed. Beijing:Higher Education Press,2013:135-181.
PIEGL L,TILLER W. The NURBS book[M]. Switzerland:Springer,2012:102-180.
CONG L,HU C Q,GUO Z P,et al. Improvement of original particle swarm optimization algorithm based on simulated annealing algorithm[C]//2008 27th Chinese Control Conference. New York:IEEE,2008:671-676.
RAMABALAN S,SARAVANAN R,BALAMURUGAN C. Multi-objective dynamic optimal trajectory planning of robot manipulators in the presence of obstacles[J]. The International Journal of Advanced Manufacturing Technology,2009,41(5/6):580-594.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构