浏览全部资源
扫码关注微信
1.西安科技大学 机械工程学院, 陕西 西安 710054
2.华电重工股份有限公司, 北京 100071
于洋(1968— ),男,陕西西安人,硕士,教授;主要研究方向为石油机械装备研制、数字化设计与制造等;yuy@xust.edu.cn。
纸质出版日期:2024-03-15,
收稿日期:2022-12-01,
扫 描 看 全 文
于洋,魏梦迪,徐桂鹏等.基于共形几何代数的工业机器人运动学分析[J].机械传动,2024,48(03):73-80.
Yu Yang,Wei Mengdi,Xu Guipeng,et al.Kinematic Analysis of Industrial Robots Based on Conformal Geometric Algebra[J].Journal of Mechanical Transmission,2024,48(03):73-80.
于洋,魏梦迪,徐桂鹏等.基于共形几何代数的工业机器人运动学分析[J].机械传动,2024,48(03):73-80. DOI: 10.16578/j.issn.1004.2539.2024.03.010.
Yu Yang,Wei Mengdi,Xu Guipeng,et al.Kinematic Analysis of Industrial Robots Based on Conformal Geometric Algebra[J].Journal of Mechanical Transmission,2024,48(03):73-80. DOI: 10.16578/j.issn.1004.2539.2024.03.010.
为解决工业机器人运动学求解复杂程度高、运算量大的问题,将共形几何代数(Conformal Geometric Algebra,CGA)方法引入到工业机器人运动学模型构建中。在正运动学求解过程中,利用CGA中平移算子和旋转算子列出各关节的运动表达式,求出机器人末端执行器的位姿;在逆运动学求解过程中,将构造的基本几何体进行外积计算,求得各关节点的位置,然后构造过关节点的线和面,并在CGA框架内做内积,得到所有关节角的余弦表达,求解得到机器人逆运动学的全部解;最后,以MOTOMAN-HP20D型6自由度工业机器人为例进行计算,并通过Matlab/Simulink软件验证了算法的准确性和有效性,为机器人后续的运动控制奠定了基础。
In order to solve the problem of high complexity and large amount of computation for kinematics of industrial robots
conformal geometric algebra (CGA) is introduced to the construction of kinematics model of industrial robots. In the forward kinematics solving process
the motion expressions of each joint are obtained by using the translation and rotation operators in CGA
and then the pose of the end-effector of the robot is obtained. In the process of solving the inverse kinematics
cross product of the constructed basic geometry is carried out to obtain the position of each joint node
the lines and planes through the joint node are constructed
the inner product is made in the CGA frame to obtain the cosine expression of all joint angles
and then all the solutions of the robot's inverse kinematics are solved. Finally
the MOTOMAN-HP20D 6-DOF industrial robot is used for example calculation
and the accuracy and effectiveness of the algorithm is verified by Matlab/Simulink software
which lays the foundation for the subsequent motion control of the robot.
共形几何代数运动学分析工业机器人基本几何体
Conformal geometric algebraKinematic analysisIndustrial robotBasic geometry
计时鸣,黄希欢.工业机器人技术的发展与应用综述[J].机电工程,2015,32(1):1-13.
JI Shiming,HUANG Xihuan.Review of development and application of industrial robot technology[J].Journal of Mechanical & Electrical Engineering,2015,32(1):1-13.
熊有伦,丁汉,刘恩沧.机器人学[M].北京:机械工业出版社,1993:15-31.
XIONG Youlun,DING Han,LIU Encang.Robotics[M].Beijing:China Machine Press,1993:15-31.
邓鹏鹏,张春燕,高兆楼,等.2P3R型机器人运动学及工作空间分析[J].机械传动,2022,46(1):98-103.
DENG Pengpeng,ZHANG Chunyan,GAO Zhaolou,et al.Kinematics and workspace analysis of 2P3R robot[J].Journal of Mechanical Transmission,2022,46(1):98-103.
李雪梅,崔菲菲,骆海涛,等.六自由度工业机器人运动学分析与仿真[J].制造业自动化,2022,44(7):7-10.
LI Xuemei,CUI Feifei,LUO Haitao,et al.Kinematics analysis and simulation of six degrees of freedom industrial robots[J].Manufacturing Automation,2022,44(7):7-10.
倪华康,杨泽源,杨一帆,等.考虑基坐标系误差的机器人运动学标定方法[J].中国机械工程,2022,33(6):647-655.
NI Huakang,YANG Zeyuan,YANG Yifang,et al.Robot kinematics calibration method considering base frame errors[J].China Mechanical Engineering,2022,33(6):647-655.
LEE R S,LIN Y H.Development of universal environment for constructing 5-axis virtual machine tool based on modified D-H notation and OpenGL[J].Robotics and Computer-Integrated Manufacturing,2010,26(3):253-262.
敖宇.六自由度机器人位姿分析及轨迹规划研究[D].重庆:重庆大学,2020:9-24.
AO Yu.Research on pose analysis and trajectory planning of six degrees of freedom robot[D].Chongqing:Chongqing University,2020:9-24.
卢喆,郑松.基于几何法和旋量理论的6自由度机器人逆解算法[J].机械传动,2017,41(6):111-114.
LU Zhe,ZHENG Song.Inverse kinematics algorithm of 6-DOF robots based on geometric method and screw theory[J].Journal of Mechanical Transmission,2017,41(6):111-114.
姚文岳.基于旋量理论的五自由度串联机械臂运动分析与控制研究[D].哈尔滨:哈尔滨工程大学,2021:11-15.
YAO Wenyue.Research on motion analysis and control of 5-DOF serial manipulator based on screw theory[D].Harbin:Harbin Engineering University,2021:11-15.
DENAVIT J,HARTENBERG R S.A kinematic notation for lower-pair mechanisms based on matrices[J].Journal of Applied Mechanics,1955,22(2):215-221.
李西宸.6R机械臂轨迹规划与轨迹跟踪研究[D].株洲:湖南工业大学,2022:16-22.
LI Xichen.Research on trajectory planning and trajectory tracking of 6R manipulator[D].Zhuzhou:Hunan University of Technology,2022:16-22.
钱东海,王新峰,赵伟,等.基于旋量理论和Paden-Kahan子问题的6自由度机器人逆解算法[J].机械工程学报,2009,45(9):72-76.
QIAN Donghai,WANG Xinfeng,ZHAO Wei,et al.Algorithm for the inverse kinematics calculation of 6-DOF robots based on screw theory and Paden-Kahan sub-problems[J].Journal of Mechanical Engineering,2009,45(9):72-76.
KIM J S,JEONG J H,PARK J H.Inverse kinematics and geometric singularity analysis of a 3-SPS/S redundant motion mechanism using conformal geometric algebra[J].Mechanism and Machine Theory,2015,90:23-36.
MA S,SHI Z P,SHAO Z Z,et al.Higher-order logic formalization of conformal geometric algebra and its application in verifying a robotic manipulation algorithm[J].Advances in Applied Clifford Algebras,2016,26(4):1305-1330.
张英,魏世民,李端玲,等.平面并联机构正运动学分析的几何建模和免消元计算[J].机械工程学报,2018,54(19):27-33.
ZHANG Ying,WEI Shimin,LI Duanling,et al.Geometric modeling and free-elimination computing method for the forward kinematics analysis of planar parallel manipulators[J].Journal of Mechanical Engineering,2018,54(19):27-33.
杜鹃.几何代数在机器人机构学符号分析中的理论和应用[D].南京:南京航空航天大学,2018:2-13.
DU Juan.Theoretical and applied geometric algebra in symbolic analyses of mechanisms[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2018:2-13.
胡波,张达,高俊林,等.基于共形几何代数求解(4SPS+SPR)+(2RPS+SPR)串并联机构位置正解[J].机械工程学报,2021,57(13):102-113.
HU Bo,ZHANG Da,GAO Junlin,et al.CGA-based approach to solve the forward position solution of the (4SPS+SPR)+(2RPS+SPR) serial-parallel manipulator[J].Journal of Mechanical Engineering,2021,57(13):102-113.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构