Guo Panpan,Zhang Wenbin,Cui Ben,et al.Gearbox Fault Diagnosis Method Based on Improved Multi-scale Mean Permutation Entropy and Parameter Optimization SVM[J].Journal of Mechanical Transmission,2024,48(04):154-161.
Guo Panpan,Zhang Wenbin,Cui Ben,et al.Gearbox Fault Diagnosis Method Based on Improved Multi-scale Mean Permutation Entropy and Parameter Optimization SVM[J].Journal of Mechanical Transmission,2024,48(04):154-161. DOI: 10.16578/j.issn.1004.2539.2024.04.021.
Gearbox Fault Diagnosis Method Based on Improved Multi-scale Mean Permutation Entropy and Parameter Optimization SVM
当齿轮箱传动系统发生故障时,不同振动信号的多尺度均值排列熵(Multi-scale Mean Permutation Entropy,MMPE)与其故障状态有一定的对应关系,但MMPE提取故障特征的效果取决于参数的选取。因此,提出了一种基于改进MMPE和参数优化支持向量机(Support Vector Machine,SVM)的齿轮箱故障识别方法。首先,引用粒子群优化(Particle Swarm Optimization,PSO)算法对MMPE的参数进行优化;其次,对采集到的齿轮振动信号计算其MMPE;最后,采用PSO-SVM对齿轮的故障状态进行了识别。试验结果验证了所提方法的有效性且具有较高的准确率。
Abstract
When a gearbox transmission system fails
the multi-scale mean permutation entropy (MMPE) of different vibration signals corresponds to the fault state to a certain extent. However
the effect of multi-scale mean permutation entropy extraction fault features depends on the selection of parameters. Therefore
this study proposes a gearbox fault identification method based on the improved multi-scale mean permutation entropy and the parameter optimization support vector machine(SVM). Firstly
the particle swarm optimization (PSO) is referenced to optimize parameters of multi-scale mean permutation entropy. Secondly
the multi-scale mean permutation entropy of the collected gear vibration signals is calculated.Finally
the particle swarm optimization is used to optimize the support vector machine to identify the fault state of the gear. Experimental analysis results are conducted to validate the effectiveness of this proposed method.
关键词
多尺度均值排列熵粒子群优化算法支持向量机故障诊断齿轮
Keywords
Multi-scale mean permutation entropyParticle swarm optimization algorithmSupport vector machineFault diagnosisGear
SHI Xianjiang,WANG Guirong,SI Junshan.Mechanical fault diagnosis and analysis of typical cases[M].Beijing:Chemical Industry Press,2013:117-138.
SHANNON C E.A mathematical theory of communication[J].Bell System Technical Journal,1948,27(4):623-656.
YAN R,GAO R X.Approximate entropy as a diagnostic tool for machine health monitoring[J].Mechanical Systems & Signal Processing,2007,21(2):824-839.
LAKE D E,RICHMAN J S,GRIFFIN M P,et al.Sample entropy analysis of neonatal heart rate variability[J].American Journal of Physiology-Regulatory,Integrative and Comparative Physiology,2002,283(3):789-797.
CAO Y,TUNG W W,GAO J B,et al.Detecting dynamical changes in time series using the permutation entropy[J].Physical Review E,2004,70(4):046217.
YANG Wangcan,ZHANG Peilin,WANG Huaiguang,et al.Gear fault diagnosis based on multi-scale fuzzy entropy of EEMD[J].Journal of Vibration and Shock,2015,34(14):163-167.
AZIZ W,ARIF M.Multiscale permutation entropy of physiological time series[C]//2005 Pakistan Section Multitopic Conference,December,24-25,2005,Karachi,Pakistan,IEEE,2005:1-6.
ZHENG Jinde,CHENG Junsheng,YANG Yu.Multi-scale permutation entropy and its applications to rolling bearing fault diagnosis[J].China Mechanical Engineering,2013,24(19):2641-2646.
WANG Gongxian,ZHANG Miao,HU Zhihui,et al.Bearing fault diagnosis of support vector machine based on multi-scale mean arrangement entropy and parameter optimization[J].Journal of Vibration and Shock,2022,41(1):221-228.
RAO Guoqiang,FENG Fuzhou,SI Aiwei,et al.Research on optimization method for determining parameters of permutation entropy algorithm[J].Journal of Vibration and Shock,2014,33(1):188-193.
CHEN Dongning,ZHANG Yundong,YAO Chengyu,et al.Fault diagnosis based on FVMD multi-scale permutation entropy and GK fuzzy clustering[J].Journal of Mechanical Engineering,2018,54(14):16-27.
YU Lei,CHEN Sen,ZHANG Rui,et al.Application of deep support vector machine in gear fault diagnosis[J].Journal of Mechanical Transmission,2019,43(8):150-156.
吉根林.遗传算法研究综述[J].计算机应用与软件,2004,21(2):69-73.
JI Genlin.Survey on genetic algorithm[J].Computer Applications and Software,2004,21(2):69-73.
RAFIEE J,ARVANI F,HARIFI A,et al.Intelligent condition monitoring of a gearbox using artificial neural network[J].Mechanical Systems and Signal Processing,2007,21(4):1746-1754.