Sun Haibo,Shen Feng.Study on Internal Fatigue Crack Initiation and Propagation Direction of Wind Turbine Gearbox Bearings[J].Journal of Mechanical Transmission,2022,46(08):33-38.
Sun Haibo,Shen Feng.Study on Internal Fatigue Crack Initiation and Propagation Direction of Wind Turbine Gearbox Bearings[J].Journal of Mechanical Transmission,2022,46(08):33-38. DOI: 10.16578/j.issn.1004.2539.2022.08.006.
Study on Internal Fatigue Crack Initiation and Propagation Direction of Wind Turbine Gearbox Bearings
The fatigue crack initiation direction of wind turbine gearbox bearings is investigated. Through theoretical research,it is believed that the direction of crack initiation depends on the direction of the maximum shear stress amplitude plane at the local initiation position. After calculation,it is found that the orthogonal shear stress amplitude of the shallow layer inside the bearing raceway is greater than the principal shear stress amplitude,and the principal shear stress amplitude at the deeper layer is greater than the orthogonal shear stress amplitude. Therefore,the crack initiation angle varies with the initiation depth. Aiming at the problem of crack propagation,the method of stress superposition in the polar coordinate of the crack tip in fracture mechanics is used to clarify the influence of Hertz contact stress,residual stress,assembly interference pressure,etc. on the direction of crack propagation. The applicability of the theory is verified by analyzing the failure cases of bearings with different thermal treatment microstructure.
SINGH H,PULIKOLLU R V,HAWKINS W,et al.Investigation of microstructural alterations in low-and high-speed intermediate-stage wind turbine gearbox bearings[J].Tribology Letters,2017,65(3):81.
KIM T H,OLVER A V,PEARSON P K.Fatigue and fracture mechanisms in large rolling element bearings[J].Tribology Transactions,2001,44(4):583-590.
AVERBECKS S,SPRIESTERSBACH D,KERSCHER E.Mechanism of fine granular area and white etching crack formation in AISI 52100 bearing steel[J].Theoretical and Applied Fracture Mechanics,2020,108:102664.
ISO K,YOKOUCHI A,TAKEMURA H.Research work for clarifying the mechanism of white structure flaking and extending the life of bearings[J].SAE Transactions,2005,114:827-836.
GOULD B,GRECO A.The influence of sliding and contact severity on the generation of white etching cracks[J].Tribology Letters,2015,60(2):1-13.
CIAVARELLA M,MONNO F.A comparison of multiaxial fatigue criteria as applied to rolling contact fatigue[J].Tribology International,2010,43(11):2139-2144.
王英玉,姚卫星.材料多轴疲劳破坏准则回顾[J].机械强度,2003,25(3):246-250.
WANG Yingyu,YAO Weixing.Review on the multiaxial fatigue criteria[J].Journal of Mechanical Strength,2003,25(3):246-250.
ALFREDSSON B,OLSSON M.Applying multiaxial fatigue criteria to standing contact fatigue[J].International Journal of Fatigue,2001,23(6):533-548.
EKBERG A,KABO E,ANDERSSON H.An engineering model for prediction of rolling contact fatigue of railway wheels[J].Fatigue & Fracture of Engineering Materials & Structures,2002,25(10):899-909.
陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2002:9-11.
CHEN Chuanyao.Fatigue and fracture[M].Wuhan:Huazhong University of Science&Technology Press,2002:9-11.
MCDIARMID D L.A shear stress based critical-plane criterion of multiaxial fatigue failure for design and life prediction[J].Fatigue & Fracture of Engineering Materials & Structures,1994,17(12):1475-1484.
YEH N M,KREMPI E,DANGVAN K,et al.Advances in multiaxial fatigue[M].West Conshohocken:ASTM,1993:7-8.
束德林.工程材料力学性能[M].北京:机械工业出版社,2004:32-33,126-127.
SHU Delin.Mechanical properties of engineering materials[M].Beijing:China Machine Press,2004:32-33,126-127.
BORESI A P,SCHMIDT R J.Advanced mechanics of materials[M].6th ed.Hoboken:John Wiley & Sons,2003:614-618.
LUNDBERG G,PALMGREN A.Dynamic capacity of rolling bearings[J].Mechanical Engineering,1952:3-50.
HARRIS T A.Essential concepts of bearing technology[M].Boca Raton:CRC Press,2006:146.
BOIADJIEV I,WITZIG J,TOBIE T,et al.Tooth flank fracture-basic principles and calculation model for a sub surface initiated fatigue failure mode of case hardened gears[C].International Gear Conference,2014:670-680.
RYCERZ P,OLVER A,KADIRIC A.Propagation of surface initiated rolling contact fatigue cracks in bearing steel[J].International Journal of Fatigue,2017,97:29-38.
ERRICHELLO R,BUDNY R,ECKERT R.Investigations of bearing failures associated with white etching areas(WEAs) in wind turbine gearboxes[J].Tribology Transactions,2013,56(6):1069-1076.
GOULD B,PALADUGU M,DEMAS N G,et al.The impact of steel microstructure and heat treatment on the formation of white etching cracks[J].Tribology International,2019,134:232-239.
POOK L P.Mechanical behavior of materials:engineering methods for deformation,fracture,and fatigue[J].Prentice Hall,1997,19(3):269-270.
ALFREDSSON B,WATZ V,OLSSON E.Fatigue crack initiation and growth at holes in a high strength bainitic roller bearing steel when loaded with non-proportional shear and compressive cycles[J].International Journal of Fatigue,2011,33(9):1244-1256.
QI Shuang,CAI Lixun,BAO Chen,et al.Fatigue propagation behavior of mode Ⅱ crack of 30Cr2Ni4MoV rotor steel[J].Journal of Mechanical Engineering,2020,56(20):88-97.
LAWN B R,WILSHAW T R.Fracture of brittle solids[M].Cambridge:Cambridge University Press,1975:24-26.
MURAKAMI Y,FUKUSHIMA Y,TOYAMA K,et al.Fatigue crack path and threshold in Mode II and Mode III loadings[J].Engineering Fracture Mechanics,2008,75(3/4):306-318.
TARANTINO M G,BERETTA S,FOLETTI S,et al.Experiments under pure shear and rolling contact fatigue conditions:competition between tensile and shear mode crack growth[J].International Journal of Fatigue,2013,46:67-80.
HU Z,MA L,CAO S.Study of shear fatigue crack mechanisms[J].Fatigue & Fracture of Engineering Materials & Structures,1992,15(6):563-572.
周益春.材料固体力学[M].北京:科学出版社,2006:147-167.
ZHOU Yichun.Solid mechanics in material[M].Beijing:Science Press,2006:147-167.
潘健生,胡明娟.热处理工艺学[M].北京:高等教育出版社,2009:71-76.
PAN Jiansheng,HU Mingjuan.Heat treatment technology[M].Beijing:Higher Education Press,2009:71-76.
PALADUGU M.Influence of material,heat treatment and microstructure in resisting white etching crack damage[C]//STP1623 on 12th International Symposium on Rolling Bearing Steels:Progress in Bearing Steel Metallurgical Testing and Quality Assurance.West Conshohocken:ASTM International,2020:182-201.
HE H F,LIU H J,ZHU C C,et al.Study on the gear fatigue behavior considering the effect of residual stress based on the continuum damage approach[J].Engineering Failure Analysis,2019,104:531-544.